External tibial torsion and lower back pain

How can external tibial torsion and lower back pain possibly be related? Let’s take a quick look at the anatomy and see how.

knees neutral, note external rotation of the right foot and decreased progression angle

knees neutral, note external rotation of the right foot and decreased progression angle

Remember the external tibial torsion is present if we drop a plumbline from the tibial tuberosity and it passes between the first and second metatarsals or more medially. This increases the progression angle of the foot. This occurs due to “over rotation" of the lower extremity during development, often exceeding the 1.5 degrees per year of external rotation per year up to age 15 or occurring for a longer period of time, up to skeletal maturity. It can be uni or bilateral.

note when the foot is neutral, the knee points inward

note when the foot is neutral, the knee points inward

Often, due to the increased progression angle, people will try to "straighten their feet" (ie, decrees their progression angle) to move forward in the sagittal plane. This places the knees to the inside of the sagittal plane which causes medial knee fall and sometimes increased mid and forefoot pronation. This results in increased medial spin of the thigh bilaterally which increases the lumbar lordosis. Combine this with a sway back or anterior pelvic tilt and you have increased pressure on the lumbar facet joints. The facets are designed to carry approximately 20% of the load put in these circumstances are often called upon to carry the much more. This often results in facet imbrication and lower back pain. You can strengthen the abdomen all you like but if you do not change the attitude of the foot, a will often develop lower back pain, especially when the abs fatigue. Now think about if the deformity is unilateral; this will often cause asymmetrical rotation of the pelvis in a clockwise or counter clockwise direction.

So, what can you do you?

Since external tibial torsion is a "hard deformity", we can influence how the bone grows before skeletal maturity but after that will not change significantly with stretching or exercise.

  • You can teach them to walk with an increase in progression angle (ie “duck footed”). This will often keep the knee in the sagittal plane and can be surprisingly well tolerated

  • You can use a foot leveling orthotic or arch support to bolster the arch and change the mechanics of the foot, causing external rotation of the tibia which will often result in a decrease in progression angle in compensation while still keeping the knee in the sagittal plane

  • You could place a full length varus wedge in the shoe which, by inverting the foot, externally rotates the tibia which the person will often compensates for by decreasing there progression angle to keep the knee and the sagittal plane



Dr Ivo Waerlop, one of The Gait Guys



#tibialtorsion #lowbackpain #LBP #progressionangle





Sometimes it’s OK for “toes in“ squats

We hear from folks and also read on a lot of blogs and articles about whether your toes should be in or out for squats or other types of activities. The real answer is “it depends”.

What it depends on is the patient’s specific anatomy. That means we need to pay attention to knees and hips and things like femoral and tibial torsion‘s. It’s paramount to keep the knees in the sagittal plane, no matter what the lower extremity orientation is.

When somebody has external tibial torsion (i.e. when you drop a plumbline from there to view tuberosity it passes medial to the line between the second and third or second metatarsal) then having your feet and externally rotated position places the knees in sagittal plane. Having the patient go “toes in” with this type of anatomy will cause both knees to for medially and create patellofemoral tracking issues.

Likewise, like the patient in the video, (Yes, I know I say “external tibial torsion“ at the beginning of the video but the patient has internal tibial torsion as you will see from the remainder of the video) when somebody has internal tibial torsion (I.e. when you drop a plumbline from the tibial tuberosity it passes lateral to the second metatarsal or a line between the second and third metatarsal) you would need to point the toes inward to keep the knees in the sagittal plane as demonstrated in the video. You can also see in the video when her feet are placed “toes out“ they fall outside sagittal plane laterally which creates patellofemoral tracking issues like it was in this particular patient.

So, knees in or knees out? It depends…

Dr. Ivo Waerlop, one of The Gait Guys

#internaltibialtorsion #externaltibialtorsion #kneepain #kneesin #kneesout #squats #thegaitguys

External tibial torsion or femoral retrotorsion?

IMG_6727.JPG

This young lad presents to your office complaining of bilateral knee discomfort at the medial aspect, just below the patella, particularly when ascending and descending stairs and hills. You narrow it down to abnormal patellar tracking and 2 possibilities of who is driving the bus, but which is it?

Torsions of an extremity are said to exist when they measure two or more standard deviation‘s outside of normal. In external tibial torsion, the shaft of the tibia over rotates more than it’s 1.5° per year from zero at birth to greater than 19°. You are left with a foot that is has an increased progression angle and a center of gravity falls medial to the foot causing abnormal patellar tracking.

Femoral retro torsion is said to exist when the head of the femur over reduces from its 35° angle at birth to less than 8° resulting in severely limited internal rotation of the hips bilaterally. The lower extremity is often externally rotated to compensate.

An easy differential for the 2 is to drop a plumbline from the tibial tuberosity through the foot. This line normally passes through the second or between the second and third metatarsal‘s. If it falls medial to that it is eternal tibial torsion and lateral to that most likely internal tibial torsion or potentially a metatarsus varus or forefoot adductus.

IMG_6759.jpg


Another differential would be to perform “Craigs test” and measure how much internal and external rotation of the femur there is at the femoral acetabular articulation.

An easier way to put it is; those with femoral retrotorsion have less hip internal rotation and often increased amounts of external rotation; often they can’t even get past zero, never mind the requisite 4-6 degrees for normal gait. Those with increased internal rotation and diminished external rotation most likely have femoral antetorsion.

IMG_6726.jpg


So, Which is it? When his knees are Straightahead, his feet point out; when his feet are straightahead, his knees point inward. A plumbline from the tibial tuberosity passes medial to the second metatarsal. Looking at the pictures, you can see that he is external tibial torsion along with a sandal thong deformity that we talked about last week.

Dr Ivo Waerlop, one of The Gait Guys.

#externaltibialtorsion #outturnedfoot #increasedprogressionangle #kneepain #thegaitguys

When the big toes head...East? Whats the deal?

IMG_6721.JPG

What is this?

IMG_6722.JPG

A sandal gap deformity or hallux varus creates an expanded first interspace between the hallux and the rest of the toes. It is a likened to the gap caused by wearing a sandal but is actually a normal variant. It can occasionally be developmental. In the fetus, it can be a soft marker for other fetal anomalies such as Downs syndrome, an amniotic band or ectrodactyly. It’s considered benign, however in this individual could have been developmental.

IMG_6727.JPG

Notice how he has external tibial torsion (when his knees are pointing forward his feet point to the outside). External tibial torsion generally, because of the orientation of the foot, causes the center of gravity to fall medially thus the need for something to push and stabilize you more laterally, such as toes two through five abducting : )

Dr Ivo Waerlop, one of The Gait Guys

#halluxvarus #strangelookingfeet #hallux #thegaitguys #sandalgapdeformity





Barp EA, Temple EW, Hall JL, Smith HL. Treatment of Hallux Varus After Traumatic Adductor Hallucis Tendon Rupture. J Foot Ankle Surg. 2018 Mar - Apr;57(2):418-420.

https://radiopedia.org/articles/sandal-gap-deformity?lang=us

Munir U, Morgan S. Hallux Varus. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-.
2019 May 6.

Ryan PM, Johnston A, Gun BK. Post-traumatic dynamic hallux varus instability. J Clin Orthop Trauma. 2014 Jun;5(2):94-8. doi: 10.1016/j.jcot.2014.05.005. Epub 2014 Jun 15.

Sixth toe disease...That growth on the outside of your foot… Or on somebody’s foot is coming to see you…

IMG_6704.JPG

You know what we’re talking about. That extra growth on the lateral aspect of the foot that happens way too often and many of your clients. A Taylor’s bunion or sometimes referred to as a “bunionette”. 

What is the usual fix?

Usually in a ski boot or hiking boot, they blow out the lateral side of the shoe. This is usually not a good fix because most of these folks have internal tibial torsion and somewhat of a forefoot supinatus/varus.

IMG_6706.JPG
IMG_6707.JPG

The internal tibial torsion places the knee outside the saggital plane and an arch support without a forefoot valgus post will just push it further out, creating a conflict at the knee. The forefoot supinatus and/or varus places them on the outside of the foot as well. Remember, most of these folks are ALREADY on the outside of the foot and the foot wants to migrate laterally...so creating more space just means it migrates farther. Good thought, doesn’t work that way.

IMG_6710.JPG

So what did we do?

  • We created a valgus post for the forefoot (see picture above) tapering from lateral to medial and to help “push“ the distal aspect of the first ray down (because there was motion available that was not being used)

  • We gave him exercises to help descend the first ray like the extensor hallucis brevis exercise, toe waving as well as peroneus longus exercises

  • We gave him plenty of balance and coordination work

    Dr Ivo Waerlop, one of The Gait Guys




#6thtoe #internaltibialtorsion #forefootvarus # forefootsupinatus #gaitanalysis #thegaitguys







Some more really subtle things...How sharp are YOUR eyes?

As I study this video more and more (yep, we just keep looking at things because we are that nerdy and that paranoid that we missed something) I saw at least 3 very subtle findings. 

Watch the video of this right handed physical therapist who had L knee reconstruction (MCL/ACL with hamstring allograft) a few (hundred) times and see what you come up with, then come back and read this. We lie to slow things down and even frame by frame it with the slow motion feature or space bar to stop it. As background to the clinical exam, he has limited hip and knee extension on the left, 4/5 weakness of the quadratus femoris. His popliteus tests strong and 5/5. He has right sided back pain with L sided knee pain at the joint line and just inferior and medial. the treadmill is at a 2% grade at 2 mph.

Notice how he has a pelvic drift to the right during stance phase on that side. Why do you think? Remember, he has had a left sided knee surgery that left him with limited knee extension on that side. This creates a functional short leg on that side (the left), so he needs to get the longer (right) leg around. We don’t always see lateral movement of the pelvis on the longer leg side, but our guess is he is trying to “shorten” the longer leg side; lateral translation in the coronal plane is one strategy to accomplish that.

Now look at the left side. Can you see the subtle hip hike to clear the right leg? How about the small amount of circumduction? Sometimes folks will employ more than one strategy to get around a long leg, but ususally one will predominate, but not in this case. 

Did you catch the abductory twist of the right heel? The longer leg side needs to go through a greater range of motion of ankle dorsiflexion which will store more potential energy in the tricep surae as well as long flexors of the toes, that energy needs to go somewhere!

Now think about step length. It will often be shortened on the shorter leg side. He still needs to move forward the same amount, so he uses the right arm to help propel his center of mass forward. Do you see the increased arm swing? 

And why does he abduct his right arm so much? Where is his center of mass at left foot strike? It is all the way to the right, because of the “short leg”, correct? How can you counterbalance that? Abducting the arm would certainly accomplish that. Why does it go across the body? It is no longer needed to be that lateral during stance phase on the right, but he still needs to use it to propel himself forward with the shortened step length we talked about before. 

Mental gymnastics, running through what runs through our minds and why things may appear the way that they do. A great lesson in knowing what is supposed to happen and when in the gait cycle



Dr Ivo Waerlop, one of The Gait Guys



#kneepain #lowbackpain #gaitanalysis #thegaitguys #visualgaitanalysis

We’ve told you once and we will tell you again…

Folks with femoral retro torsion often experience lower back pain with twisting movements

This left handed hydrology engineer Presented to the office with an acute onset of lower back pain following “swinging a softball bat”. He comments that he always “hit it out of the park“ and hit “five home runs“ in the last game prior to his backs demise.

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

He presented antalgic with a pelvic shift to the left side, flexion of the lumbar spine with 0° extension and a complete loss of the lumbar lordosis. He could not extend his lumbar spine past 0° and was able to flex approximately 70. Lateral bending was approximately 20° on each side. Neurological exam negative. Physical exam revealed bilateral femoral retro torsion as seen above. Note above the loss of internal rotation at the hips of both legs, thus he has very limited internal rotation of the hips. Femoral retroversion means that the angle of the neck of the femur (also known as the femoral neck angle) is less than 8°, severely limiting internal rotation of the hip and often leading to CAM lesions.

Stand like you’re in a batters box and swing like you’re left handed. What do you notice? As you come through your swing your left hip externally rotates and your right hip must internally rotate. He has no internal rotation of the right hip and on a good day, the lumbar spine has about 5° of rotation with half of that occurring at the lumbosacral junction. Guess what? The facet joints are going to become compressed!

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

Now combine that with bilateral 4 foot adductus (see photos above). His foot is already in supination so it is a poor shock observer.

Go back to your “batters box“. Come through your swing left handed. What do you notice? The left foot goes into a greater amount of pronation in the right foot goes into a greater amount of supination. Do you think this is going to help the amount of internal rotation available to the hip?

When folks present with lower back pain due to twisting injuries, make sure to check for femoral torsions. They’re often present with internal tibial torsion, which is also present in this individual.

Remember a while ago we said “things occur in threes”. That goes for congenital abnormalities as well: in this patient: femoral retro torsion, internal tibial torsion and forefoot adductus.

What do we do? Treat locally to reduce inflammation and take steps to try to improve internal rotation of the hips bilaterally as well as having him externally rotate his right foot when he is in the batteries box to allow him to "create" more internal rotation of the right hip.

Dr Ivo Waerlop, one of The Gait Guys

#internalrotation #hipproblem #femoraltorsion #femoralversion #retroversion #retrotorsion #thegaitguys

Holy twisted tibias Batman! What is going here in this R sided knee pain patient?

Screen Shot 2019-06-10 at 12.28.38 PM.png

In the 1st picture note this patient is in a neutral posture. Note how far externally rotated her right foot is compared to the left. Note that when you drop a plumbline down from the tibial tuberosity it does not pass-through or between the second and third metatarsals. Also note the incident left short leg

Screen Shot 2019-06-10 at 12.28.56 PM.png

In the next picture both of the patients legs are fully externally rotated. Note the large disparity from right to left. Because of the limited extra rotation of the right hip this patient most likely has femoral retro torsion. This means that the angle of her femoral head is at a greater than 12° angle. We would normally expect approximately 40° of external Rotation. 4 to 6° is requisite for normal gait and supination.

Screen Shot 2019-06-10 at 12.28.47 PM.png

In the next picture the patients knees are fully internally rotated you can see that she has an excessive amount of internal rotation on the right compare to left, confirming her femoral antetorsion.

Screen Shot 2019-06-10 at 12.28.38 PM.png

When this patient puts her feet straight (last picture), her knees point to the inside causing the patello femoral dysfunction right greater than left. No wonder she has right-sided knee pain!

Because of the degree of external tibial torsion (14 to 21° considered normal), activity modification is imperative. A foot leveling orthotic with a modified UCB, also inverting the orthotic is helpful to bring her foot somewhat more to the midline (the orthotic pushes the knee further outside the sagittal plane and the patient internally rotate the need to compensate, thus giving a better alignment).


a note on tibial torsion. As the fetus matures, The tibia then rotates externally, and most newborns have an average of 0- 4° of internal tibial torsion. At birth, there should be little to no torsion of the tibia; the proximal and distal portions of the bone have little angular difference (see above: top). Postnatally, the tibia should twist outward (externally) a total of 15 degrees until adult values are reached between ages 8 and 10 years of 23° of external tibial torsion (range, 0° to 40°).

Wow, cool stuff, eh? Dr Ivo Waerlop, one of The Gait Guys

#tibialtorsion #tibialversion #kneepain #thegaitguys #gaitanalysis

Neuroma! Triple Threat....

Can you guess why this patient is developing a neuroma on the left foot, between the 3rd and 4th metatarsals?

IMG_6220.jpg
IMG_6218.jpg
IMG_6219.jpg

This gal presented to the office with pain in the left foot, in the area she points to as being between the 3rd and 4th metatarsals. It has been coming on over time and has become much worse this spring with hiking long distances, especially in narrower shoes. It is relieved by rest and made worse with activity.

Note the following:

  • She has an anatomical short leg on the left (tibial)

  • internal tibial torsion on the left

  • left forefoot adductus (see the post link below if you need a refresher)

Lets think about this.

The anatomical short leg on the left is causing this foot to remain in relative supination compared the right and causes her to bear weight laterally on the foot.

The internal tibial torsion has a similar effect, decreasing the progression angle and again causing her to bear weight laterally on the foot, compressing the metatarsals together.

We have discussed forefoot adductus before here on the blog. Again, because of the metararsal varus angle, it alters the forces traveling through the foot, pushing the metatarsals together and irritating the nerve root sheath, causing hypertrophy of the epineurium and the beginnings of a neuroma.

In this patients case, these things are additive, causing what I like to a call the “triple threat”.

So, what do we do?

  • give her shoes/sandals with a wider toe box

  • work on foot mobility, especially in descending the 1st ray on the left

  • work on foot intrinsic strength, particularly the long extensors

  • treat the area of inflammation with acupuncture

Dr Ivo Waerlop, one of The Gait Guys

#forefootadductus #metatarsusadductus #neuroma #gaitanalysis #thegaitguys #internaltibialtorsion

3 things

Its subtle, but hopefully you see these 3 things in this video.

I just LOVE the slow motion feature on my iPhone. It save me from having to drag the video into Quicktime, slow it down and rerecord it.

This gal has a healing left plantar plate lesion under the 2nd and 3rd mets. She has an anatomical leg length deficiency, short on the left, and bilateral internal tibial torsion, with no significant femoral version. Yes, there are plenty of other salient details, but this sketch will help.

  1. 1st if all, do you see how the pelvis on her left dips WAY more when she lands on the right? There is a small amount of coronal plane shift to the right as well. This often happens in gluteus medius insufficiency on the stance phase leg (right in this case), or quadratus lumborum (QL) deficiency on the swing phase leg (left in this case) or both. Yes, there are other things that can cause this and the list is numerous, but lets stick to these 2 for now. In this case it was her left QL driving the bus.

  2. Watch the left and right forefeet. can you see how she strikes more inverted on the left? this is a common finding, as the body often (but not always) tries to supinate the shorter extremity (dorsiflexion, eversion and adduction, remember?) in an attempt to “lengthen” it. Yes, there is usually anterior pelvic tilt accompanying it on the side, because I knew you were going to ask : )

  3. Look how her knees are OUTSIDE the saggital plane and remain there in her running stride. This is commonly seen in folks with internal tibial torsion and is one of the reasons that in our opinion, these folks should not be put medially posted, torsionally rigid, motion control shoes as this usually drive the knees FURTHER outside the saggital plane and can macerate the meniscus.

Yep, lots more we could talk about on this video, but in my opinion, 3 is a good number.

Dr Ivo Waerlop, one of The Gait Guys

#thegaitguys #gaitanalysis #footpain #gaitproblem #internaltibialtorsion #quadratuslumborum #footstrike

https://vimeo.com/329212767

Things seem to come in 3's...

Things tend to occur in threes. This includes congenital abnormalities. Take a look this gentleman who came in to see us with lower back pain.

Highlights with pictures below:

  • bilateral femoral retrotorsion

  • bilateral internal tibial torsion

  • forefoot (metatarsus) adductus

So why LBP? Our theory is the lack of internal rotation of the lower extremities forces that motion to occur somewhere; the next mobile area just north is the lumbar spine, where there is limited rotation available, usually about 5 degrees.

Dr Ivo Waerlop, one of The Gait Guys.

#tibialtorsion #femoraltorsion #femoralretrotorsion #lowbackpain #thegaitguys #gaitproblem

this is his left hip in full internal rotation. note that he does go past zero.

this is his left hip in full internal rotation. note that he does go past zero.

full internal rotation of the right hip; note he does not go past zero

full internal rotation of the right hip; note he does not go past zero

note the internal tibial torsion. a line dropped from the tibial tuberosity should go through the 2nd metatarsal or between the 2nd and 3rd.

note the internal tibial torsion. a line dropped from the tibial tuberosity should go through the 2nd metatarsal or between the 2nd and 3rd.

ditto for the keft

ditto for the keft

a line bisecting the calcaneus should pass between the 2nd and 3rd metatarsal shafts. If talar tosion was present, the rearfoot would appear more adducted

a line bisecting the calcaneus should pass between the 2nd and 3rd metatarsal shafts. If talar tosion was present, the rearfoot would appear more adducted

less adductus but still present

less adductus but still present

look at that long flexor response in compensation. What can you say about the quadratus plantae? NO bueno…

look at that long flexor response in compensation. What can you say about the quadratus plantae? NO bueno…

Ditto!

Ditto!

Motion control Shoes + Internal Tibial Torsion = Knee Pain

Thinking about putting a motion control shoe under that foot to control pronation? You had better make sure you make friends with the knee, as it will often (depending on the compensation) be placed OUTSIDE the SAGGITAL PLANE. Like Dr Allen has said many times before , the knee is basically a hinge joint placed between 2 ball and socket joints, and it is usually the one to start grumbling...

Learn more as Dr Ivo Waerlop of The Gait Guys explains in this brief video

#gait #Gaitanalysis #gaitguys #thegaitguys #kneepain #motioncontrolshoes #internaltibialtorsion

https://vimeo.com/154496722

And why does this guy have hip pain?

line up the center of the heel counters with the outsoles, and what do you see?

line up the center of the heel counters with the outsoles, and what do you see?

can you see how the heel counter is centered on the outsole, like it is supposed to be

can you see how the heel counter is centered on the outsole, like it is supposed to be

notice how the heel counter of the shoe is canted medially on the outsole of the shoe, creating a varus cant

notice how the heel counter of the shoe is canted medially on the outsole of the shoe, creating a varus cant

Take a guy with lower back and left sided sub patellar pain that also has a left anatomically short leg (tibial) and bilateral internal tibial torsion and put him in these baby’s to play pickleball and you have a prescription for disaster.

Folks with an LLD generally (soft rule here) have a tendency to supinate more on the short leg side (in an attempt to make the limb longer) and pronate more on the longer leg side (to make the limb shorter). Supination causes external rotation of the lower limb (remember, we are trying to make the foot into a rigid lever in a “normal” gait cycle). this external rotation with rotate the knee externally (laterally). Folks with internal tibial torsion usually rotate their limb externally to give them a better progression angle (of the foot) so they don’t trip and fall from having their feet pointing inward. This ALSO moves the knee into external rotation (laterally), often moving it OUTSIDE the saggital plane. In this case, the knee, because of the difference in leg length AND internal tibial torsion AND the varus cant of the shoe, has his knee WAY OUTSIDE the saggital plane, causing faulty patellar tracking and LBP.

Moral of the story? When people present with a problem ALWAYS TAKE TIME TO LOOK AT THEIR SHOES!

So, you do weighted carries?

METHODS:

Participants were instructed to ascend and descend a three-step staircase at preferred pace using a right leg lead and a left leg lead for each load condition: no load, 20% body weight (BW) bilateral load, and 20% BW unilateral load. L5/S1 contralateral bending, hip abduction, external knee varus, and ankle inversion moments were calculated using inverse dynamics.

 

Nothing earthshaking here (1) , but a few takeaways:

  • Asymmetric loading of L5-S1 will most likely become more significant if the individual has a L5-S1 facet tropism, where one (or both) of the facets is (are) facing saggitally, as loading will be be even greater.  This has been associated with disc derangement (2) and degeneration (3).

 

  • The body does seem to adjust for the load, but it takes at least to the second step. We need to make sure the proprioceptive feedback loops (joint and muscle mechanoreceptors and their associated pathways) are functioning well. Manipulate, mobilize, facilitate, inhibit as appropriate.

 

  • The increased varus moment and hip abduction on the unweighted side are most likely to move the center of gravity more to the midline, which makes sense. This may become problematic with folks with increased internal tibial torsion, especially with femoral retroversion/torsion as they already have limited internal rotation available to them at the hip

 

 

 

 

 

 
1. Wang J, Gillette JC. Carrying asymmetric loads during stair negotiation: Loaded limb stance vs. unloaded limb stance. Gait Posture. 2018 Jun 19;64:213-219. doi: 10.1016/j.gaitpost.2018.06.113. [Epub ahead of print]
2. Chadha M, Sharma G, Arora SS, Kochar V. Association of facet tropism with lumbar disc herniation. European Spine Journal. 2013;22(5):1045-1052. doi:10.1007/s00586-012-2612-5.
3. Berlemann U, Jeszenszky DJ, Buhler DW, Harms J (1998) Facet joint remodeling in degenerative spondylolisthesis: an investigation of joint orientation and tropism. Eur Spine J 7: 376-380.

 

Abstract

BACKGROUND:

Individuals often carry items in one hand instead of both hands during activities of daily living. Research Question The purpose of this study was to investigate low back and lower extremity frontal plane moments for loaded limb stance and unloaded limb stance when carrying symmetric and asymmetric loads during stair negotiation.

METHODS:

Participants were instructed to ascend and descend a three-step staircase at preferred pace using a right leg lead and a left leg lead for each load condition: no load, 20% body weight (BW) bilateral load, and 20% BW unilateral load. L5/S1 contralateral bending, hip abduction, external knee varus, and ankle inversion moments were calculated using inverse dynamics.

RESULTS:

Peak L5/S1 contralateral bending moments were significantly higher when carrying a 20% BW unilateral load as compared to a 20% BW bilateral load for both stair ascent and stair descent. In addition, peak L5/S1 contralateral bending moments were significantly higher during step one than for step two. Peak external knee varus and hip abduction moments were significantly higher in unloaded limb stance as compared to loaded limb stance when carrying a 20% BW unilateral load.

SIGNIFICANCE:

General load carriage recommendations include carrying less than 20% BW loads and splitting loads bilaterally when feasible. Assessment recommendations include analyzing the first stair step and analyzing both the loaded and unloaded limbs.

How can feet relate to golf swing?

This 52 year old right handed gentleman presented with pain at the thoracolumbar junction after playing golf. He noticed he had a limited amount of “back swing” and pain at the end of his “follow through”.

Take a look a these pix and think about why.

Full internal rotation

Full internal rotation

full external rotation

full external rotation

full internal rotation

full internal rotation

full external rotation

full external rotation

neutral

neutral

neutral

neutral

Hopefully, in addition to he having hairy and scarred legs (he is a contractor by trade), you noted the following

  • Top: note the normal internal rotation of the right hip; You need 4 degrees to walk normally and most folks have close to 40 degrees. He also has internal tibial torsion.
  • second picture: loss of external rotation of the right hip. Again, you need 4 degrees (from neutral) of external rotation of the hip to supinate and walk normally.
  • third picture: normal internal rotation of the left hip; internal tibial torsion
  • 4th picture: limited external rotation of the left hip, especially with respect ti the amount of internal rotation present; this is to a greater degree than the right
  • last 2 pictures: note the amount of tibial varum and tibial torsion. Yes, with this much varum, he has a forefoot varus.

The brain is wired so that it will (generally) not allow you to walk with your toes pointing in (pigeon toed), so you rotate them out to somewhat of a normal progression angle. If you have internal tibial torsion, this places the knees outside the saggital plane. (For more on tibial torsion, click here.) If you rotate your extremity outward, and already have a limited amount of range of motion available, you will take up some of that range of motion, making less available for normal physiological function. If the motion cannot occur at the knee or hip, it will usually occur at the next available joint cephalad, in this case the spine.

The lumbar spine has a limited amount of rotation available, ranging from 1.2-1.7 degrees per segment in a normal spine (1). This is generally less in degenerative conditions (2).

Place your feet on the ground with your feet pointing straight ahead. Now simulate a right handed golf swing, bending slightly at the waist androtating your body backward to the right. Now slowly swing and follow through from right to left. Note what happens to your hips: as you wind back to the right, the left hip is externally rotating and the right hip is internally rotating. As you follow through to the left, your right, your hip must externally rotate and your left hip must externally rotate. Can you see how his left hip is inhibiting his back swing and his right hip is limitinghis follow through? Can you see that because of his internal tibial torsion, he has already “used up” some of his external rotation range of motion?

If he does not have enough range of motion in the hip, where will it come from?

he will “borrow it” from a joint more north of the hip, in this case, his spine. More motion will occur at the thoracolumbar junction, since most likely (because of degenerative change) the most is available there; but you can only “borrow” so much before you need to “Pay it back”. In this case, he over rotated and injured the joint.

What did we do?

  • we treated the injured joint locally, with manipulation of the pathomechanical segments
  • we reduced inflammation and muscle spasm with acupuncture
  • we gave him some lumbar and throacolumbar stabilization exercises: founders exercise, extension holds, non tripod, cross crawl, pull ups
  • we gave him foot exercises to reduce his forefoot varus: tripod standing, EHB, lift-spread-reach
  • we had him externally rotate both feet (duck) when playing golf

The Gait Guys. Helping you to store up lots “in your bank” of foot and gait literacy, so you can help people when they need to “pay it back”, one case at a time.

(1) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223353/

(2) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705911/

Tibial Torsion and Genu Valgum

Join us in this brief video about tibial torsion and genu valgum in a 6-year-old

Mooney JF 3rd Lower extremity rotational and angular issues in children. Pediatr Clin North Am. 2014 Dec;61(6):1175-83. doi: 10.1016/j.pcl.2014.08.006. Epub 2014 Sep 18.

Killam PE. Orthopedic assessment of young children: developmental variations. Nurse Pract. 1989 Jul;14(7):27-30, 32-4, 36.

Kling TF Jr, Hensinger RN. Angular and torsional deformities of the lower limbs in children. Clin Orthop Relat Res. 1983 Jun;(176):136-47.

tumblr_oa5thqROml1qhko2so1_1280.jpg
tumblr_oa5thqROml1qhko2so2_1280.jpg
tumblr_oa5thqROml1qhko2so3_1280.jpg
tumblr_oa5thqROml1qhko2so4_1280.jpg

 Why does this gal have so much limited external rotation of her legs? 

 We have discussed torsions and versions here on the blog many times before. We rarely see femoral antetorsion. She came in to see us with the pain following a total hip replacement on the right.

 Note that she has fairly good internal rotation of the hips bilaterally but limited external rotation. This is usually not the case, as most folks lose internal rotation. We need 4 to 6° internal and external rotation to walk normally. This poor gal has very little external rotation available to her.

Have you figured out what’s going on with hips yet? She has a condition called femoral ante torsion.   This means that the angle of the femoral neck is in excess of 12°. This will allow her to have a lot of internal rotation but very little external rotation.  She will need to either “create” or “borrow” her requisite external rotation from somewhere. In this case she decreases her progression of gait (intoed), and borrows the remainder from her lumbar spine.

 So what do we do? We attempt to create more external rotation. We are accomplishing this with exercises that emphasize external rotation, acupuncture/needling of the hip capsule and musculature which would promote external rotation (posterior fibers of gluteus medius,  gluteus maximus, vastus medialis, biceps femoris). A few degrees can go a very long way as they have in this patient. 

confused? Did you miss our awesome post on femoral torsions: click here to learn more.