The effects of aging on the proprioceptive system

When the nervous system breaks down, there are predictable patterns that we can see. Aging isn't that much different in the grand scale of things than some neurological disorders. Here is a brief video of a gentleman that presented to us with neck discomfort and limited range of motion. Step through it several times before proceeding.

Hopefully, you noted the following:

  • Increased arm swing on the right (or, decreased on Left)

  • Pelvic shift to the left on Left stance phase

  • Decreased step length on the left

  • Hip hike on Left during Right stance phase


The patient DOES NOT have a leg length deficiency.

We remember that there are 3 systems that keep us upright in the gravitational plane:

1. vision
2. vestibular system

3. proprioceptive system

We also remember that as one of these systems become impaired, the others will usually increase their function to help maintain homeostasis. All these systems are known to decline in function with aging. So we have 3 systems breaking down simultaneously.

Did you also note the head forward posture, to move the center of gravity forward? How about the subtle head tilt to the right and “bobble” right and left? Motions which have to do with the head are functions of the vestibular system. He is attempting to increase the input to these areas (by exaggerating movements) to increase input.

How about the glasses? Presbyopia (hardening of the lens) makes it more difficult to focus. Movement (detected largely by rods in the eyes have a much higher density than cones, which are for visual acuity). By moving the head, he provides more input to the visual (and thus nervous system)

Amplified extremity movements provide greater input to the proprioceptive system (muscle spindles and golgi tendon organs (GTO’s), as well as joint mechanoreceptors).

Think of the cortical implications (and effects on the cerebellum, the queen of motor activity and important component for learning). You are witnessing the cognitive effects of aging playing out on the ability to ambulate and its effect on gait.


So what do we do?

  • Improve quality of joint motion, whether that is mobilization or manual methods to improve motion where motion is lost. Perhaps acupuncture to help establish homeostasis and improve muscular function. There are many options.

  • Postural advice and exercises

  • Core work

  • Proprioceptive exercises (like head repositioning accuracy, heel to toe and heel to shin)

  • Gait retraining


You get the idea. Providing some of that increased input for him and helping the system to better process the information will be the key to improving his function and helping to counteract and maybe slow the effects of aging on the locomotor system.

We are the Gait Guys; giving you the info so we can all make a difference, every day


We will be talking about some principals of proprioceptive rehabilitation along with 2 cases of neurological disorders Wednesday evening for our "3rd Wednesdays" talk on online.com: Biomechanics 321. 5 PST, 6MST, 7CST, 8EST

Special thanks to RM, who allowed us to use this video for this discussion.

When the nervous system breaks down, gait becomes more primitive.

Whether we are looking at an injury or a neurological disorder, when something goes awry, we can almost always predict that the gait pattern will start to decompose. We can learn a lot about gait from watching this kiddo walk. An immature nervous system is very similar to one which is compensating meaning there will often "cheat" around a more proper and desirable movement pattern; we often resort to a more primitive state when challenges beyond our ability are presented. This is very common when we lose some aspect of proprioception, particularly from some peripheral joint or muscle, which in turn, leads to a loss of cerebellar input (and thus cerebellar function). Remember, the cerebellum along with the upper brainstem is a temporal pattern generating center so a loss of cerebellar sensory input leads to poor pattern generation output.

Watch this clip several times and then try and note each of the following:

  • Wide based gait; this is because proprioception is still developing (joint and muscle mechanoreceptors and of course, the spino cerebellar pathways and motor cortex)

  • increased progression angle of the feet: this again is to try and retain stability. External rotation allows them to access a greater portion of the glute max and the frontal plane (engaging an additional plane is always more stable).

  • Shortened step length: this keeps the center of gravity close to the body and makes corrections for errors that much easier This immature DEVELOPING system is very much like a mature system that is REGRESSING. This is a paramount learning point !)

  • Decreased speed of movement; this allows more time to process proprioceptive clues, creating accuracy of motion

  • Sometimes we see increased arm and accessory movements, again to try and increase proprioceptive input and provide additional stability.


Proprioceptive clues are an important aspect of gait analysis, in both the young and old, especially since we tend to revert back to an earlier phase of development when we have an injury or dysfunction.

We will be talking about these principals along with 2 cases of neurological disorders and more this Wednesday evening for our "3rd Wednesdays" talk on online.com: Biomechanics 321. 5 PST, 6MST, 7CST, 8EST


Dr Ivo Waerlop, one of The Gait Guys

#gaitanalysis #decompositionofgait #proprioception #neurologicaldisorder #thegaitguys






What a difference a few months makes

Take a look at the pre-and post videos of this gal with a forefoot supinatus and impaired motor control of her feet and core. Shuffle walks, foot intrinsic exercises, core work and gait retraining can go a long way! The important thing to remember here is that the patient was very motivated and did what was required to make things happen. A testament to tenacity and dedication

Dr Ivo Waerlop, one of The Gait Guys

#beforeandafter #gaitretraining #gaitanalysis #forefootsupinatus

Yep, these shoes stink for this gal...

IMG_6882.jpg

Look at the left shoe and compare it to the right. See how the upper is canted on the outsole? This “varus cant” can create lots of problems or could actually be beneficial, believe it or not, depending upon the pathology.

In this particular persons story, it was NOT a good thing. They have an anatomical short leg on the left-hand side. If you remember from following us here in the past, generally speaking, the shorter leg tide tends to be more supinated and the forefoot tends to be in more varus. This means more of a “reach” with that foot during the contact phase of gait, Whether that’s running or walking. This generally means that the forefoot will pronate more on the long leg side.

This shoe “defect“ may actually be benefit for someone who has too much rear or mid foot pronation as it would “delay” pronation by starting to rearfoot in an inverted position at heel strike.

The Fix?

You could grind the sole into varus an equal amount to equal the varus cant. In our opinion, not a good idea.

You could return the shoe (that’s what this person is doing) and get another one

In addition, you could…

Give the person a 3 mm sole lift to correct for the leg length discrepancy

Make sure they have adequate range of motion in the first ray on the short leg side to be be able to plantar flex the 1st ray and reach the ground

Make sure they have adequate control of the core musculature as well as foot intrinsic musculature during stance phase.

Dr Ivo Waerlop, one of The Gait Guys

#badshoes #theshoeistheproblem #forefootvarus #leglengthdifference
#gaitproblem

Podcast 151: Gait and neurology of movement, including, Tightness? shortness? What’s the difference? It's the Neurology.

Truths about Stretching, a case of sesamoiditis, plus exercised induced muscle damage and impaired motor learning, central fatigue, POSE and Chi running and injuries. This is a good one gang, do not miss it !

Links to find the podcast:
Look for us on Apple Podcasts, Google Play, Podbean, PlayerFM, RADIO and more.
Just Google "the gait guys podcast".

Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:
Apple podcasts:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2

Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Other links for today's show:

http://traffic.libsyn.com/thegaitguys/pod_151final.mp3

http://thegaitguys.libsyn.com/gait-and-neurology-of-movement-including-tightness-shortness-whats-the-difference-its-the-neurology

http://directory.libsyn.com/episode/index/id/11168369

Show notes and links:

We lose muscular Strength as we age.
Changes in supra-spinal activation play a significant role in the age-related changes in strength.
This motor system impairment can be improved by heavy resistance training
https://www.ncbi.nlm.nih.gov/pubmed/25940749

Age (Dordr). 2015 Jun;37(3):9784. doi: 10.1007/s11357-015-9784-y. Epub 2015 May 5.
Strength training-induced responses in older adults: attenuation of descending neural drive with age. Unhjem R1, Lundestad R, Fimland MS, Mosti MP, Wang E.

Osteoarthritis and running
https://journals.lww.com/acsm-csmr/Abstract/2019/06000/Running_Dose_and_Risk_of_Developing.5.aspx
Recent literature adds to a growing body of evidence suggesting that lower-dose running may be protective against the development of osteoarthritis, whereas higher-dose running may increase one's risk of developing lower-extremity osteoarthritis. However, running dose remains challenging to define, leading to difficulty in providing firm recommendations to patients regarding the degree of running which may be safe.

Can even experienced orthopaedic surgeons predict who will benefit from surgery when patients present with degenerative meniscal tears? A survey of 194 orthopaedic surgeons who made 3880 predictions
Non-surgical management is appropriate as first-line therapy in middle-aged patients with symptomatic non-obstructive meniscal tears.
https://bjsm.bmj.com/content/early/2019/08/12/bjsports-2019-100567

Sports Biomech. 2019 Jul 31:1-16. doi: 10.1080/14763141.2019.1624812. [Epub ahead of print]
Running biomechanics before and after Pose® method gait retraining in distance runners.
Wei RX1, Au IPH1, Lau FOY1, Zhang JH1, Chan ZYS1, MacPhail AJC1, Mangubat AL1, Pun G1, Cheung RTH1.

Plantar Plate Gait

This girl has a (healing) plantar plate lesion on the left hand side at the head of the second met. She also has an anatomical short leg on the same side. Her second metatarsal of both feet or longer than the first

A few things I hope you notice about the video:

  • Can you see how she “reaches“ to get to the ground with her left foot?

  • Can you see how her left foot is more inverted that strikes in the right, creating a greater amount of forefoot pronation that needs to be controlled?

  • Can you see how poor her motion control is of her pronation on the left foot with the sudden “crash” at impact?

  • Have you noticed her “crossover“ gait?


Does it make sense that because of her anatomy and running style, that the constant reach, increased forefoot inversion and lack of pronation control (which causes more abduction of the forefoot at toe off); this drives the force to the second metatarsal head which is longer and more prominent and is more than likely what led to her plantar plate lesion in the first place?


Remediation?

  • A 3 mm full length sole lift for the left foot

  • Foot intrinsic strengthening exercises

  • Hip abduction strengthening exercises/drills

  • Moving her more to a “midfoot strike” running gait with toes extended to engage the windlass


Dr Ivo Waerlop, one of The Gait Guys


#plantarplate #gaitanalysis #crossovergait #leglengthdifference #thegaitguys


Podcast 150: Subtalar joint control? Plus Heel raise effects on low back pain

Links to find the podcast:
Look for us on iTunes, Google Play, Podbean, PlayerFM and more.
Just Google "the gait guys podcast".

Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:
Apple podcasts:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2

Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Other links:
http://traffic.libsyn.com/thegaitguys/pod_1500final_-_81819_9.45_AM.mp3
http://thegaitguys.libsyn.com/subtalar-joint-control-plus-heel-raise-effects-on-low-back-pain

http://directory.libsyn.com/episode/index/id/10909609


Show notes


The HyProCure proceedure

https://images.search.yahoo.com/yhs/search;_ylt=AwrEeBmEH0RdlDUAiAUPxQt.;_ylu=X3oDMTByMjB0aG5zBGNvbG8DYmYxBHBvcwMxBHZ0aWQDBHNlYwNzYw--?p=hyprocure+sinus+tarsi+implant&fr=yhs-sz-001&hspart=sz&hsimp=yhs-001

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4621198/
https://www.ncbi.nlm.nih.gov/pubmed/21106413
https://www.ncbi.nlm.nih.gov/pubmed/29786228

High-heeled walking decreases lumbar lordosis.EdenyBaaklini et al.
https://www.sciencedirect.com/science/article/pii/S096663621730108X

The effect of high-heeled shoes on lumbar lordosis: a narrative review and discussion of the disconnect between Internet content and peer-reviewed literature. Brent S. Russell
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3206568/

Prolong Wearing of High Heeled Shoes Can Cause Low Back PainFarjad Afzal1* and Sidra Manzoor
https://pdfs.semanticscholar.org/afb4/641b8ed6450fcbdfa8ff99029d935c2bdc88.pdf

Relation between Wearing High-Heeled Shoes and Gastrocnemius and Erector Spine Muscle Action and Lumbar Lordosis. Cezar Augusto Souza Casarin
https://www.medscitechnol.com/download/index/idArt/892352

A flatter foot approach?
https://twitter.com/IzzyMoorePhD/status/1157034538192855041

Thoughts: titrate into speed work just like doing the same for longer and longer runs
Creating a "speed base"
https://www.fastrunning.com/?p=26410&preview=true

"monster walks"
Hip-Muscle Activity in Men and Women During Resisted Side Stepping With Different Band Positions. Lewis CL, et al. J Athl Train. 2018.
https://www.ncbi.nlm.nih.gov/m/pubmed/30615490/

Physical findings differ between individuals with greater trochanteric pain syndrome and healthy controls: A systematic review with meta-analysis.
Plinsinga ML1, Ross MH1, Coombes BK2, Vicenzino B3.
Musculoskelet Sci Pract. 2019 Jul 25;43:83-90. doi: 10.1016/j.msksp.2019.07.009. [Epub ahead of print]
https://www.ncbi.nlm.nih.gov/pubmed/31369906

Low back pain and asymmetry.

Screen Shot 2019-04-07 at 10.00.54 AM.png

Do oarsmen have asymmetries in the strength of their back and leg muscles?
IF these oarsmen were more symmetrical would they not be in pain?

From the study below:
"Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen."

Here we have a supported study of asymmetry and injury/pain. This is what we have been saying (asymmetry matters) in the last few days with our posts on asymmetry. This study eludes to a finding that strength can test normal and symmetrical, but EMG activity can show patterns of asymmetry that can result in problems/pain.

Have you ever rowed? I mean truly rowed, in a shell, on the water, not on land or on a Concept 2 rower? It is just not the same, especially if you have an unilateral asymmetrical loading arc, like an oarsman pulling from port or starboard. I have rowed on the water just like this, briefly, one summer in a camp for young teens. I rowed on my home town course, on the World famous Royal Canadian Henley Regatta. I was the 2nd seat, starboard, in an 8 man shell. 8 oars in the water, 8+1 guys, one oar a piece, alternating port and starboard. I was behind the stroke. I hated it. Perhaps the hardest thing I had ever done sport wise to that point, largely because this dude setting the pace was jacked on caffeine, or something else, I think. No one works harder than rowers if you ask me, they are some of the fittest athletes in the world. Why? because it is a whole body effort.
Ok, enough of the fluff.

Now imagine rowing like this for many years in high school, college and/or competitively. Forcefully pulling on one oar, across an arc of pull out one side of the boat, thousands of times a day for many years. If that isn't something that will develop asymmetry I do not know what might. Oarsman are under near constant high end effort pushing and pulling loads (push with the legs, pull with the arms). There are few, if any, sports with such high end constant effort than rowing.

From the Parkin et al study:
"The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen."- Parkin et al.

Extra sauce:
I "caught a crab" many times when a novice oarsman and was nearly vaulted out of the boat on one fatal event. A crab is the term rowers use when the oar blade gets “caught” in the water. It is caused by a momentary flaw in oar technique and the paddle end of the oar is pulled into the depths instead of skimming just below the surface. Catching a crab has happened to anyone who has ever rowed. A crab may be minor, allowing the rower to quickly recover, or it may be so forceful that the rower is ejected from the boat as the handle end catches the oarsman under the arms lifting them out of the boat.

J Sports Sci. 2001 Jul;19(7):521-6.
Do oarsmen have asymmetries in the strength of their back and leg muscles? Parkin S1, Nowicky AV, Rutherford OM, McGregor AH.

When you see this, you should be thinking one of 3 possible etiologies...

Cardinal sign of either a forefoot supinatus/forefoot varus or collapsing midfoot

I was hiking behind this young chap over the weekend along with my son and friends. Note the amount of calcaneal eversion present on the right side that is not present on the left. Also note the increased progression angle of the right foot and subtle circumduction of the extremity.

In my experience, you would generally see this much calcaneal diversion and one of three scenarios:

1. Moderate leg length discrepancy with the increased calcaneovalgus occurring on the longer leg side. This would support the amount of circumduction were seeing on the right side.

2. When there is a forefoot supinatus present and and inadequate range of motion available in the midfoot and/or forefoot. This is most likely the case here.

3. In moderate To severe midfoot collapse. This is clearly not the case as the medial aspect of the shoe is usually “blown out”.

Next time you see an everting rearfoot, think about these three possible etiologies.

Dr Ivo Waerlop, on of The Gait Guys

#evertedrrarfoot #calcanealvalgus #shortleg #forefootsupinatus #forefootvarus #gaitanalysis #thegaitguys

The amazing power of compensation. Coming to a patient in your office… Maybe today

This gal has had a right sided knee replacement. She has an anatomical right short leg, a forefoot supinatus, an increased Q angle and a forefoot adductus. So, what’s the backstory?

When we have an anatomical short leg, we will often have a tendency to try to “lengthen“ that extremity and “shorten” the longer extremity. This is often accomplished through pelvic rotation although sometimes can be with knee flexion/extension or change in the Q angle. When the condition is long-standing, the body will often compensate in other ways, such as what we are seeing here.

IMG_6736.jpg

The fore foot can supinate in an attempt to lenthen the extremity. Note how the right extremity forefoot is in varus with respect to the rearfoot, effectively lengthening the extremity. As you can see from the picture, this is becoming a “hard“ deformity resulting in a forefoot varus.

IMG_6740.jpg

Over time, the forefoot has actually “adducted “ as you can see, again in an attempt to lengthen the extremity. Remember that supination is plantar flexion, abduction and inversion, all three which are visible here.


You will also see that the Q angle is less on the right side (se above), effectively lengthening that extremity, but not quite enough as we can see from the picture :-)



Dr Ivo Waerlop, one of The Gait Guys

#forefootadductus #shortleg #kneereplacement #tkr #forefootvarus #gait #thegaitguys

When the big toes head...East? Whats the deal?

IMG_6721.JPG

What is this?

IMG_6722.JPG

A sandal gap deformity or hallux varus creates an expanded first interspace between the hallux and the rest of the toes. It is a likened to the gap caused by wearing a sandal but is actually a normal variant. It can occasionally be developmental. In the fetus, it can be a soft marker for other fetal anomalies such as Downs syndrome, an amniotic band or ectrodactyly. It’s considered benign, however in this individual could have been developmental.

IMG_6727.JPG

Notice how he has external tibial torsion (when his knees are pointing forward his feet point to the outside). External tibial torsion generally, because of the orientation of the foot, causes the center of gravity to fall medially thus the need for something to push and stabilize you more laterally, such as toes two through five abducting : )

Dr Ivo Waerlop, one of The Gait Guys

#halluxvarus #strangelookingfeet #hallux #thegaitguys #sandalgapdeformity





Barp EA, Temple EW, Hall JL, Smith HL. Treatment of Hallux Varus After Traumatic Adductor Hallucis Tendon Rupture. J Foot Ankle Surg. 2018 Mar - Apr;57(2):418-420.

https://radiopedia.org/articles/sandal-gap-deformity?lang=us

Munir U, Morgan S. Hallux Varus. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-.
2019 May 6.

Ryan PM, Johnston A, Gun BK. Post-traumatic dynamic hallux varus instability. J Clin Orthop Trauma. 2014 Jun;5(2):94-8. doi: 10.1016/j.jcot.2014.05.005. Epub 2014 Jun 15.

Sixth toe disease...That growth on the outside of your foot… Or on somebody’s foot is coming to see you…

IMG_6704.JPG

You know what we’re talking about. That extra growth on the lateral aspect of the foot that happens way too often and many of your clients. A Taylor’s bunion or sometimes referred to as a “bunionette”. 

What is the usual fix?

Usually in a ski boot or hiking boot, they blow out the lateral side of the shoe. This is usually not a good fix because most of these folks have internal tibial torsion and somewhat of a forefoot supinatus/varus.

IMG_6706.JPG
IMG_6707.JPG

The internal tibial torsion places the knee outside the saggital plane and an arch support without a forefoot valgus post will just push it further out, creating a conflict at the knee. The forefoot supinatus and/or varus places them on the outside of the foot as well. Remember, most of these folks are ALREADY on the outside of the foot and the foot wants to migrate laterally...so creating more space just means it migrates farther. Good thought, doesn’t work that way.

IMG_6710.JPG

So what did we do?

  • We created a valgus post for the forefoot (see picture above) tapering from lateral to medial and to help “push“ the distal aspect of the first ray down (because there was motion available that was not being used)

  • We gave him exercises to help descend the first ray like the extensor hallucis brevis exercise, toe waving as well as peroneus longus exercises

  • We gave him plenty of balance and coordination work

    Dr Ivo Waerlop, one of The Gait Guys




#6thtoe #internaltibialtorsion #forefootvarus # forefootsupinatus #gaitanalysis #thegaitguys







Podcast 149: A runner's podcast. Many things running and biomechanics.


Links to find the podcast:
Look for us on iTunes, Google Play, Podbean, PlayerFM and more.
Just Google "the gait guys podcast".

Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:
Apple podcasts:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2

Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Other links:
http://traffic.libsyn.com/thegaitguys/pod_149_-_71319_7.44_AM.mp3
http://thegaitguys.libsyn.com/a-runners-podcast-many-things-running-and-biomechanics
http://directory.libsyn.com/episode/index/id/10506122



Show notes:


Exercise matters
3 months of exercise training reprogrammed the epigenetics of sperm DNA in healthy young men. Exercise silenced genes in sperm DNA involved in schizophrenia, Parkinson's disease, cervical cancer, leukemia, and autism
https://www.ncbi.nlm.nih.gov/pubmed/25864559?dopt=Abstract
Epigenomics. 2015 Aug;7(5):717-31. doi: 10.2217/epi.15.29. Epub 2015 Apr 13.
Genome-wide sperm DNA methylation changes after 3 months of exercise training in humans.
Denham J1, O'Brien BJ2, Harvey JT2, Charchar FJ

Footstrike doesnt matter?
https://www.outsideonline.com/2397214/foot-strike-running-study

Adaptation of Running Biomechanics to Repeated Barefoot Running: A Randomized Controlled Study - Karsten Hollander, Dominik Liebl, Stephanie Meining, Klaus Mattes, Steffen Willwacher, Astrid Zech, 2019
https://journals.sagepub.com/doi/full/10.1177/0363546519849920
Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy.
Moore IS. Sports Med. 2016.
https://www.ncbi.nlm.nih.gov/m/pubmed/26816209/

Running Technique is an Important Component of Running Economy and Performance.
https://www.ncbi.nlm.nih.gov/m/pubmed/28263283/
Folland JP, et al. Med Sci Sports Exerc. 2017.
https://journals.sagepub.com/doi/full/10.1177/0363546519849920

Important to note though than less vertical oscillation is associated with better economy within groups of distance runners, eg ncbi.nlm.nih.gov/m/pubmed/28263… ; ncbi.nlm.nih.gov/m/pubmed/26816… compliant tendons but greater leg stiffness is the goal for distance runners, correct?

This video shows how end. runners compliance & economy are achieved by greater vertical excursions vs. sprinters who hit hard, get off the ground fast and burn more energy.
https://www.nytimes.com/video/sports/100000004379956/identifying-the-best-way-to-run.html

typically have peak vertical forces of 2.5-3.0 times body weight to offset gravity during contact portion of the stride.
https://www.youtube.com/watch?v=hEnIbklXOiU

Effects of footwear midsole thickness on running biomechanics
Sports Medicine and Biomechanics
Mark H.C. Law, Eric M.F. Choi, Stephanie H.Y. Law, Subrina S.C. Chan , Sonia M.S. Wong, Eric C.K. Ching
https://www.tandfonline.com/doi/abs/10.1080/02640414.2018.1538066?journalCode=rjsp20

Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls.
Thor F.Besiera, Michael Fredericsona, Garry E.Gold, Gary S.Beaupréd, Scott L.Delp
Journal of Biomechanics Volume 42, Issue 7, 11 May 2009, Pages 898-905
https://www.sciencedirect.com/science/article/abs/pii/S0021929009000396

The Gracilis: Have you considered it in your medial knee pain patients?

The gracilis is the 3rd, seldom mentioned contributor to the pes anserine when it comes to knee pain. It lives in the medial compartment of the thigh and helps to add stability to the medial stabilizing complex of the knee.

image credit: https://en.wikipedia.org/wiki/File:Slide3rrr.JPG

image credit: https://en.wikipedia.org/wiki/File:Slide3rrr.JPG

During an ideal gait cycle, the gracilis tonically contracts throughout stance phase with bursts from terminal swing through initial contact and again from pre swing to initial swing; it is very similar to the adductors in this respect

The gracilis is a superficial muscle on the medial thigh, running from the the pubic symphisis and upper pubic arch to the pes, sandwiched between the sartorius and semitendinosis. The muscle adducts, medially rotates (with hip flexion), laterally rotates, and flexes the hip , and also aids in flexion of the knee. It can be called upon as a thigh flexor (as can the sartorius) when the abs (particularly the external obliques) do not initiate thigh flexion and the TFL, rectus femoris and iliopsoas groups are dysfunctional. Gracilis dysfunction may contribute to medial knee pain when the thigh needs help flexing. We see this particularly on people with excessive mid foot pronation when the foot remains on the ground too long and need some “help” or a “jump start” to initiate thigh flexion.

Think about this “unsung hero” next time you have a recalcitrant medial knee pain patient.

 

Gupta, Aman & Saraf, Abhinesh & Yadav, Chandrajeet. (2013). ISSN 2347-954X (Print) High-Resolution Ultrasonography in PesAnserinus Bursitis: Case Report and Literature Review. 1. 753-757. 

Gray H:  Anatomy of the Human Body  Lea and Febiger, Phildelphia and New York 1918

 Michaud T: in Foot Orthoses and Other Forms of Conservative Foot Care Williams & Wilkins, 1993 Pp. 50-55

 Michaud T: in Human Locomotion: The Conservative Management of Gait-Related Disorders 2011

OTS: Over Training Syndrome. Do you have any of these symptoms ? A blog post & 2 podcasts for you on the topic.

photo: courtesy of pixabay.com

photo: courtesy of pixabay.com

Made famous in the beginning, first it was Alberto Salazar.  Now, just in the last decade it has been Anna Frost, Anton Krupicka, Geoff Roes, Kyle Skaggs, even Mike Wolfe. One by one they have fallen, to OTS.  More frighteningly, how many more have fallen to OTS that we never hear about? How many hundreds or thousands walking amongst us have OTS ? If you are a distance or heavy volume training athlete, do not brush off or take lightly what I have complied here today.


OTS, "Overtraining syndrome" is its name, but perhaps a better one would be "Insufficient Recovery Syndrome".  To use the broadest of terms, this is a self-generated, self-perpetuating dis-ease of one's own homeostasis. To be clear, there is a continuum here of multi-system failure, softer less severe forms of OTS. These less damaged states are referred to as Overreaching syndrome (OR). There are two forms of Overreaching syndrome, Functional OR and Nonfunctional OR. Nonfunctional OR shows decreases in performance for weeks to months while OTS being more severe and requiring months to years for recovery despite rest.

Here are 2 podcasts for you on the topic:

Screen Shot 2019-07-03 at 9.58.06 AM.png

Listen to Sweat Science: The Mysterious Syndrome Destroying Top Athletes from Outside Podcast in Podcasts. https://podcasts.apple.com/us/podcast/outside-podcast/id1090500561?i=1000442759399

Listen to Podcast 121: Carrying things, Overtraining Syndrome, Ankle Rocker and more from The Gait Guys Podcast in Podcasts. https://podcasts.apple.com/us/podcast/the-gait-guys-podcast/id559864138?i=1000384117922



Over the past 10 years the best of the best are falling, one by one, victim to "too much".  They have just pushed themselves too much, too far, too long. It is the latest biggest thing in running these days, how far can you run ? Marathons are no longer enough for some, they have to see if 50 miles or 100 miles, or more, are enough and that means running 100-160 miles a week. And what is even more scary, some of these runners are in high school and college, they are still growing kids.

The physiology of these people is failing, truly. Some might suggest they in some respects showing signs of a slow death.  “OTS is one of the scariest things I’ve ever seen in my 30 plus years of working with athletes,” says David Nieman, former vice president of the American College of Sports Medicine. “To watch someone go from that degree of proficiency to a shell of their former self is unbelievably painful and frustrating.” - Meaghen Brown Jun 12, 2015.  Outside online. 

The first reference in which OTS was suggested was by a researcher and athlete named Robert Tait McKenzie.  In his 1909 book, Exercise in Education and Medicine, he mentioned a “slow poisoning of the nervous system which could last weeks or even months.” Then in 1985 South African physiologist professor Timothy Noakes discussed what appears to be the same condition in "The Lore of Running". Runners examined by Noakes had so over exerted themselves that both mind and body were failing.

OTS is truly a deeper problem. This is an immune, inflammatory, neurologic and psychological problem as best as anyone can tell.  In essence it seems the body is slowly dying. The body's parasympathetic nervous system, the system that counteracts the ramping up of the sympathetic nervous system, fails to properly respond to bring the systems back into balance. This means that many of the physiologic responses to activity fail to properly return to baseline. This means that blood pressure, heart rate, breathing, digestion, adrenal and hormonal rhythms amongst many other things go awry. Even other important things begin to decline, things like normal restful sleep, sometimes even insomnia, libido decline, metabolism dysfunction, appetite problems and even heart rate recovery and recurrent colds and viral infections.  We are talking about multi-system failure in these people, and this is serious business. The problem is, these athletes do not listen to the signals until it is too late and they are in full blown multi-system decline or failure. 

Here is likely an incomplete list of things that might be slowing showing up, softly, one by one as multi-system failure ramps up:

- anemia
- chronic dehydration
- increased resting heart rate
- breathing changes
- digestive troubles , bowel troubles (ie. runners diarrhea)
- endocrine problems: adrenal and hormonal shifts
- insomnia and sleeplessness
- blood pressure changes
- libido changes
- metabolism and appetite changes
- recurrent colds and viral infections
- generalized fatigue
- muscle soreness
- recurrent headaches
- inability to relax, listlessness
- swelling of lymph glands
- arrhythmias
- depression (neurotransmitter dysfunction)


There is a way out of OTS. But, one has to wrap their head around the fact that one's goals and mental drive have pushed them to this point. This is one's own fault and they will have to take some hard advice and make some tough decisions, decisions they do not want to make, but ultimately will have no choice but to make. That means changing those goals and habits, otherwise this could get real serious real fast. And wrapping one's head around the toughest part will be the most painful part for most, many months of rest, sometimes a year or more, to fully recover if one hasn't done too much irreparable damage to begin with.  Of course, the immediate course of action is to see a doctor. Hopefully, a doctor who is familiar with elite athletes and one that can rule out any other more serious immediate health concerns and disease processes that can mimic OTS and OR syndromes.

As with solving most problems, one has to first start to realize one is heading towards a problem, and accept responsibility. In this case, over training and under recovering.  One must look at their habits, and the subsequent outcomes, and see if there are signs of impending problems and if so be willing to make behavioral changes. This is a hard thing for endurance athletes, because it is asking them to look at enjoyable, admittedly addictive, endeavors. Endeavors that have always improved many facets of their life, yet ones that have a double edged-sword nature to them which can very quickly chop down all the hard work that has been put in. Ultimately, the answer is balance, balance in all aspects of one's life. But, who is truly good with balance ? Very few of us I am afraid.

Dr. Shawn Allen, one of the gait guys
 

References:

Running on Empty By: Meaghen Brown Jun 12, 2015.  Outside online. 
https://www.outsideonline.com/1986361/running-empty

Sports Health. 2012 Mar; 4(2): 128–138.Overtraining Syndrome. A Practical Guide
Jeffrey B. Kreher, MD†* and Jennifer B. Schwartz, MD‡
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435910/

Med Sci Sports Exerc. 2013 Jan;45(1):186-205. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine.
Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A; European College of Sport Science; American College of Sports Medicine.

Open Access J Sports Med. 2016; 7: 115–122. Published online 2016 Sep 8.  Diagnosis and prevention of overtraining syndrome: an opinion on education strategies. Jeffrey B Kreher

Overtraining, Exercise, and Adrenal Insufficiency
KA Brooks, JG Carter
J Nov Physiother. Author manuscript; available in PMC 2013 May 9.
Published in final edited form as: J Nov Physiother. 2013 Feb 16; 3(125): 11717

Related citations:
https://scholar.google.com/scholar?ion=1&espv=2&bav=on.2,or.r_cp.&biw=1179&bih=705&dpr=1.5&um=1&ie=UTF-8&lr&cites=3025342060917260626

The glutes medius is playing target practice.

Screen Shot 2019-07-03 at 9.36.06 AM.png

We think about the gluteus medius often, mostly, during stance phases of locomotion. But, do not forget about the absolutely necessary function of the gluteus medius on the swing limb. Foot placement of that swing leg is in part dictated by how well the pendulum leg receives gluteus medius control to abduct the leg. When it fails to abduct adequately, a more adducted/medial foot placement occurs (think deeply about our long posts and podcast rants on the cross over gait, the narrow based walking and running gait style).
An agreeable balance between the abductors and adductors affords a more pure forward saggital pendulum of the hinging leg. When imbalanced, from insufficient gmedius and the rest of the abductory team, the foot and leg can target a more medial pendulum swing and thus a more medial foot target placement. Thus, the gluteus medius is important in both the stance and swing phases of gait. Failure to develop the skill, endurance and strength of the gluteus medius and related complex of muscles during stance AND swing phases will often result in frontal plane pelvis drift on the stance limb, and adduction targeting of the foot (narrow step width). What is this called ? We call it the Cross Over gait and we have written oodles of articles about this gait phenomenon, more than anyone else. It is real, it has economical advantages and similar liabilities. Want to learn more, type it into the SEARCH box on our website-blog. Many people thinkn this is a normal gait, how we should all walk and run. And they are wrong, in part. Like most things, it has a place, but not a permanent place. We think like most things in this world, there is a benefit and a drawback to things, and it is how you use it, as long as you read the instructions. Sadly, we were never given a "users manual" when we were born, so we all did what felt natural and safe. It doesn't mean it was right.


-Dr. Shawn Allen

For our Patreon patrons:
read and digest this post again before i film a video of a critical exercise we use to train the gluteus medius in BOTH PHASES ! All to often people just train the glute medius in the stance phase, and that is critical, but the swing phase is just as critical ! And this exercise i will film and post up on Patreon in the next 24 hours or so will help with this swing phase, but stance phase too. Be sure, when you study the video, that you do not get bogged down in what the exercise looks like. That is the easy part. For you to train yourself and your client, there MUST be a deep understanding of the specifics of the exercise. You have likely seen versions of this exercise other places, but it is the how and the why, and not getting sloppy with it, that is the key factor.

Photo: this came in an old box of Altra shoes, a brochure. We love Altras, they aren't for everyone, but if you are looking for a lower heel drop shoes with a wide toe box, try out a pair !

Holy Forefoot Flare, Batman!


Some sources say foot strike pattern does not matter. We disagree.

Look at this gal who midfoot/forefoot strikes. She also has a forefoot supinatus, a plastic condition where the forefoot is inverted with respect to the rearfoot. Take that combination and put it in a shoe with a forefoot flare and what do you get? Can you say AMPLIFICATION?

We’re not saying this is a bad shoe or even the wrong shoe. But, if she is going to run in this shoe, we will need to help her gain more ROM in her forefoot ( and some pelvic and hip stability) dodge doesn’t have to crash into eversion on each landing.

Help your patients with shoe selection. Something with less of a lateral flare in the forefoot would certainly make her life easier.

Need to know more? Consider taking our National Shoe Fit Program: link here:

Dr Ivo Waerlop, one of The Gait Guys

#badshoes #forefootflare #thegaitguys #forefootsupinatus #lateralflare #inversion

Metatarsalgia happens...

So a patient presents with forefoot pain, worse in the am upon awakening, with 1st weight bearing that would improve somewhat during the day, but would again get worse toward the end of the day and with increased activity. It began insidiously a few months ago (like so many problems do) and is getting progressively worse. Rest, ice and ibuprofen can offer some relief. You may see a dropped metatarsal head and puffiness and prominence in that area on the plantar surface of the foot, maybe not. Maybe you do a diagnostic ultrasound and see a lesion of the plantar plate as well? How did it get there? 

image courtesy of Tom Michaud: with permission

image courtesy of Tom Michaud: with permission

Lets look at the anatomy of the short flexors of the foot, as well as some biomechanics of the foot, ankle and hip. 

The flexor digitorum brevis (FDB) is innervated by the medial plantar nerve and arises from the medial aspect of the calcaneal tuberosity, the plantar aponeurosis (ie: plantar fascia) and the areas bewteen the plantar muscles. It travels distally, splitting at the metatarsal phalangeal articulation (this allows the long flexors to travel forward and insert on the distal phalanges); the ends come together to divide yet another time and each of the 2 portions of that tendon insert onto the middle of the middle phalanyx (1) 

As a result, in conjunction with the lumbricals, the FDB is a flexor of the metatarsophalangeal and proximal interphalangeal joints. In addition, it moves the axis of rotation of the metatasophalangeal joints dorsally, to counter act the function of the long flexors, which, when tight or overactive, have a tendency to drive this articulation anteriorly .Do you see any subtle extension of the metatarsophalangeal joint and flexion of the proximal interphalangeal joints on your exam?

We know that the FDB contracts faster than the other intrinsic muscles (2), playing a role in postural stability (3) and that the flexors temporally should contract earlier than the extensors (4), assumedly to move this joint axis posteriorly and allow proper joint centration. When this DOES NOT occur, the metatarsal heads are driven into the ground, causing irritation and pain.

If there is also a loss of ankle rocker this problem is made (much) worse. Why? Because, with the loss of one rocker, another must make up for the loss: ankle rocker decreases, forefoot rocker has to increase; this equals increased metatarsal head pressure. 

If you have been with us for any length of time, you know that ankle rocker and hip extension are intimately related, as one should equal the other, something we call “The “Z” angle”, that you have probably (hopefully?) read about here before. 

So what is the fix? Getting the FDB back on line for one. 

  • How about the toe waving exercise? 

  • How about the lift spread reach exercise? 

  • How about retraining ankle rocker and improving hip extension?

  • How about an orthotic with a metatarsal pad in the short term? 

  • How about some inflammation reducing modalities, like acupuncture, ice laser and pulsed ultrasound. 

  • Maybe some herbal or enzymatic anti inflammatories?



Dr Ivo Waerlop, one of The Gait Guys.

#gait #footpain #metatarsalgia #metatarsalpain #anklerocker #hipextension #thegaitguys



1. http://en.wikipedia.org/wiki/Flexor_digitorum_brevis_muscle

2. Tosovic D1, Ghebremedhin E, Glen C, Gorelick M, Mark Brown J.The architecture and contraction time of intrinsic foot muscles.J Electromyogr Kinesiol. 2012 Dec;22(6):930-8. doi: 10.1016/j.jelekin.2012.05.002. Epub 2012 Jun 27

3.Okai LA1, Kohn AF. Quantifying the Contributions of a Flexor Digitorum Brevis Muscle on Postural Stability.Motor Control. 2014 Jul 15. [Epub ahead of print]

4. Zelik KE1, La Scaleia V, Ivanenko YP, Lacquaniti F.Coordination of intrinsic and extrinsic foot muscles during walking.Eur J Appl Physiol. 2014 Nov 25. [Epub ahead of print]



Hallux amputation. What would you expect to present in this case ?

Screen Shot 2019-04-22 at 7.47.07 AM.png

The stuff we get/see.
Hallux amputation.
What would you expect to present in this case ?
We will dive into this one next week, but here are some cursory things to consider:

It is the right foot.
-Without the hallux, we cannot wind up the windlass and shorten the distance between the first metatarsal and heel, thus the arch will splay (more permanently over time we suspect) and we cannot optimize the arch height.
This will promote more internal spin on that limb because of more midfoot pronation and poor medial foot tripod stabilization.
- more internal limb spin means more internal hip spin, and more demand (which might not be met at the glute level) and thus loads that are supposed to be buffered with hip stabilization, will be transferred into the low back, and or into the medial knee. Look for more quad protective tone if they cannot get it from the glutes. Troubles arise when we try to control the hip from quadriceps strategies, it is poorly postured to do so, but people do it everyday, *hint: most cyclists and distance runners to a large degree)
- anterior pelvis posturing on the right, perhaps challenging durability of the lower abdominals, hence suspect QL increased protective tone, possible low back tightness or pain depending on duration of activities
- there is so much more, we are just wetting your appetite here on this one.
see you next week on this one gang !

Ivo and i are in the studio for another podcast this afternoon, hope you got to #137 this week ! lots more goodies to come !

cheers, shawn and ivo

Photo permission by patient

Screen Shot 2019-04-22 at 7.47.16 AM.png
Screen Shot 2019-04-22 at 7.46.55 AM.png

The muscle they named wrong?

Why would you name a muscle after its supposed function when its function is actually something totally different? Probably due to what made sense from how it looked, not by how it acted. Of course, we are talking about the abductor hallucis.

tumblr_nn1ca5fx0C1qhko2so1_r1_1280.jpg

Think about all the anatomy you have learned over the years. Think about all the taxonomy and how it was done: sometimes by thename of the discoverer and more often by its anatomical location. The abductor hallucis seems to be the latter. 

The abductor and adductor hallicus function from approximately midstance to pre swing (1-4) (toe off), applying equal and opposite rotational vectors of force (in an ideal world) of the proximal phalynx of the hallux. This should resolve into a purely compressive force (5). In a closed chain environment, the transverse head of the adductor hallicus should act to prevent “splay” of metatarsals, along with the lumbricals and interossei (6), providing stabilzation of the forefoot (7) and rearfoot (8) during preswing, while the oblique head serves to help maintain the medial longitudinal arch. 

The abductor hallicus is actually a misnomer, as it most cases it is not an abductor but rather a plantar flexor of the 1st ray, particularly the proximal hallux, (assisting the peroneus longus) and supinator about the oblique midtarsal joint axis (5).  In the majority of cases, there doesn’t appear to be a separate, distinct insertion of the adductor hallicus to the base of the proximal phalynx, but rather a conjoint insertion with the lateral head of the flexor hallicus bevis into the lateral sesamoid and base of the proximal phalynx (9-11), emphasizing more of its plantar flexion function and stabilizing actions, rather than abduction. 

In one EMG study of 20 people with valgus (12) they looked at activity of adductor and abductor hallucis, as well as flexor hallucis brevis and extensor hallucis longus. They found that the abductor hallucis had less activity than the adductor. No surprise here; think about reciprocal inhibition and increased activity of the adductor when the 1st ray cannot be anchoroed. They also found EMG amplitude greater in the abductor hallucis by nearly two fold in flexion. 

So, the abductor hallucis seems to be important in abduction but more important in flexion. Either way, it is a stance phase stabilizer that we are beginning to know a lot more about. As for the name? You decide...



Dr Ivo Waerlop, one of The Gait Guys



1. Basmajian JV, Deluca CJ . Muscle Alive. Their Functions Revealed by Electromyography Williams and Wilkins. Baltimore, MD 1985, 377

2. Root MC, Orien WP, Weed JH. Normal and Abnormal Function of the Foot. Clinical Biomechanics, Los Angeles, CA 1977

3. Mann RA. Biomechanics of Running. In Pack RP. d. Symposium on the foot and leg in running sports. Mosby. St Louis, MO 1982:26

4. Lyons K, Perry J, Gronley JK. Timing and relative intensity of the hip extensor and abductor muscle action during level and stair ambulation. Phys Ther 1983: 63: 1597-1605

5. Michaud T. Foot Orthoses and Other Forms of Conservative Foot Care. Newton MA 1993: 50-55

6. Fiolkowski P, Brunt D, Bishop et al. Intrinsic pedal musculature support of the medial longitudinal arch: an electromyography study. J Foot & Ankle Surg 42(6) 327-333, 2003

7. Travell JG, Simons DG. Myofascial Pain and Dysfunction: The Trigger Point Manual. Williams and Wilkins, Baltimore 1992; 529

8. Kalin PJ, Hirsch BE. The origin and function of the interosseous muscles of the foot. J Anat 152, 83-91; 1987

9. Owens S, Thordarson DB. The adductor hallucis revisited. Foot Ankle Int. 2001 Mar;22(3):186-91. Am J Phys Med Rehabil. 2003 May;82(5):345-9.

10. Brenner E.Insertion of the abductor hallucis muscle in feet with and without hallux valgus. Anat Rec. 1999 Mar;254(3):429-34.

11. Appel M, Gradinger R. [Morphology of the adductor hallux muscle and its significance for the surgical treatment of hallux valgus][Article in German] Orthop Ihre Grenzgeb. 1989 May-Jun;127(3):326-30.

12. Arinci I, Geng H, Erdem HR, Yorgancioglu ZR Muscle imbalance in hallux valgus: an electromyographic study. Am J Phys Med Rehabil. 2003 May;82(5):345-9.


#halluxvalgus #halluxabductovalgus #bunion #footmuscleactivity #gait #thegaitguys