The Short Foot Exercise

Here it is, in all its glory...Our version of the short foot exercise. Love it or hate it, say it “doesn’t translate”, we find it a useful training tool for both the patient/client as well as the clinician. It awakens and creates awareness of the sometimes dormant muscles in the user and offers a window to monitor progression for them, as well as the observer.

Remember that the foot intrinsics are supposed to be active from midstance through terminal stance/pre swing. Having the person “walk with their toes up” to avoid overusing the long flexors is a cue that works well for us. This can be a useful adjunct to your other exercises on the road to better foot intrinsic function.


Dr Ivo Waerlop, one of The Gait Guys

Sulowska I, Mika A, Oleksy Ł, Stolarczyk A. The Influence of Plantar Short Foot Muscle Exercises on the Lower Extremity Muscle Strength and Power in Proximal Segments of the Kinematic Chain in Long-Distance Runners Biomed Res Int. 2019 Jan 2;2019:6947273. doi: 10.1155/2019/6947273. eCollection 2019

Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. Effect of electromyographic biofeedback on learning the short foot exercise. J Back Musculoskelet Rehabil. 2019 Jan 4. doi: 10.3233/BMR-181155. [Epub ahead of print]

McKeon PO, Hertel J, Bramble D, et al. the foot core system: a new paradigm for understanding intrinsic foot muscle function Br J Sports Med March 2014 doi:10.1136/bjsports-2013- 092690

Dugan S, Bhat K: Biomechanics and Analysis of Running Gait Phys Med Rehabil Clin N Am 16 (2005) 603–621

Bahram J: Evaluation and Retraining of the Intrinsic Foot Muscles for Pain Syndromes Related to Abnormal Control of Pronation http://www.aptei.ca/wp-content/uploads/Intrinsic-Muscles-of-the-Foot-Retraining-Jan-29-05.pdf


#shortfootexercise #footexercises #footrehab #thegaitguys #gaitanalysis #gaitrehab #toesupwalking



https://vimeo.com/342800960

Podcast 148: A deep dive case study. Plus, Central and Peripheral fatigue explained

tag/key words: gait, gaitproblems, gaitanalysis, forefootrunning, forefootstrike, heelstrike, pronation, central fatigue, peripheral fatigue, fatigue, hip rotation, gait biomechanics, running

Links to find the podcast:
Look for us on iTunes, Google Play, Podbean, PlayerFM, Radio.com and more.
Just Google "the gait guys podcast".

Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:

iTunes page:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2

Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Direct download URL: http://traffic.libsyn.com/thegaitguys/pod_1488_-_61419final.mp3

Permalink URL: http://thegaitguys.libsyn.com/podcast-a-deep-dive-case-study-plus-central-and-peripheral-fatigue-explained

Libsyn Directory URL: http://directory.libsyn.com/episode/index/id/10151672

We’ve told you once and we will tell you again…

Folks with femoral retro torsion often experience lower back pain with twisting movements

This left handed hydrology engineer Presented to the office with an acute onset of lower back pain following “swinging a softball bat”. He comments that he always “hit it out of the park“ and hit “five home runs“ in the last game prior to his backs demise.

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

note the internal tibial torsion. drop a plumbline from the tibial tuberosity. it should pass through the 2nd met or between the 2nd and 3rd met shafts

He presented antalgic with a pelvic shift to the left side, flexion of the lumbar spine with 0° extension and a complete loss of the lumbar lordosis. He could not extend his lumbar spine past 0° and was able to flex approximately 70. Lateral bending was approximately 20° on each side. Neurological exam negative. Physical exam revealed bilateral femoral retro torsion as seen above. Note above the loss of internal rotation at the hips of both legs, thus he has very limited internal rotation of the hips. Femoral retroversion means that the angle of the neck of the femur (also known as the femoral neck angle) is less than 8°, severely limiting internal rotation of the hip and often leading to CAM lesions.

Stand like you’re in a batters box and swing like you’re left handed. What do you notice? As you come through your swing your left hip externally rotates and your right hip must internally rotate. He has no internal rotation of the right hip and on a good day, the lumbar spine has about 5° of rotation with half of that occurring at the lumbosacral junction. Guess what? The facet joints are going to become compressed!

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

bisect the calcaneus. the line should fall though the 2nd metatarsal or between the 2nd and 3rd met shafts

Now combine that with bilateral 4 foot adductus (see photos above). His foot is already in supination so it is a poor shock observer.

Go back to your “batters box“. Come through your swing left handed. What do you notice? The left foot goes into a greater amount of pronation in the right foot goes into a greater amount of supination. Do you think this is going to help the amount of internal rotation available to the hip?

When folks present with lower back pain due to twisting injuries, make sure to check for femoral torsions. They’re often present with internal tibial torsion, which is also present in this individual.

Remember a while ago we said “things occur in threes”. That goes for congenital abnormalities as well: in this patient: femoral retro torsion, internal tibial torsion and forefoot adductus.

What do we do? Treat locally to reduce inflammation and take steps to try to improve internal rotation of the hips bilaterally as well as having him externally rotate his right foot when he is in the batteries box to allow him to "create" more internal rotation of the right hip.

Dr Ivo Waerlop, one of The Gait Guys

#internalrotation #hipproblem #femoraltorsion #femoralversion #retroversion #retrotorsion #thegaitguys

If you are a sprinter, how you load the forefoot bipod might be a variable for speed or injury. Tendons can change their cross sectional area, if you load them.

Screen Shot 2019-06-10 at 6.17.21 PM.png

Of course this article is not exclusive for sprinters, it pertains to any running sport, even endurance.

Maximum isometric force had increased by 49% and tendon CSA by 17% !
Tendons can change their cross sectional area, if you load them.

Here I show lateral forefoot loading in a heel raise, and a medial forefoot loading in heel raise. This has to be part of the discovery process outlined below. Forefoot types will play into the loading choice, and unequal strength of the medial or lateral calf compartment will also play into the loading choice made. Where do you need to put your strength ? And is the forefoot competent to take that loading challenge ? Meaning, do they have a forefoot valgus? A forefoot supinatus ? These things matter. If you are a sprinter, how you load the forefoot bipod might be a variable of foot type, asymmetrical posterior compartment strength, or foot strike pattern in the frontal plane (search our blog for cross over gait and glute medius targeting strategies for step width) ,or a combination of several or all of the above. These things matter, and why and where you put your strength matters, if you are even aware of where and how you are putting the loads, and why of course. Of course, then there are people like the recent Outside online article that says how you foot strike doesn’t matter, but it does matter. But of course, if you do not know the things we have just mentioned, it is easy to write such an article.

Isometrics are useful, they have their place. In a recent podcast we discussed the place and time to use isometrics, isotonics, eccentrics and concentrics.
One of the goals in a tendinopathy is to restore the tendon stiffness. Isometrics are a safe way to load the muscle tendon complex without engaging a movement that might have to go through a painful arc of movement. With isometrics here is neurologic overspill into the painful arc without having to actually go there.
The key seems to be load. More load seems to get most people further along. Remember, the tendon is often problematic because it is inflammed and cannot provide a stiffness across its expanse. Heavy isometric loading seems to be a huge key for most cases. But, we have to say it here, not everyone fits this mold. Some tendons, in some people, will respond better to eccentrics, and strangely enough, some cases like stretching (perhaps because this is a subset of an eccentric it seems or because there is a range of motion issue in the joint that is a subset of the problem). Now the literature suggests that stretching is foolish, but each case is unique all in its own way, and finding what works for a client is their medicine, regardless of what the literature and research says.
Finding the right load for a given tendon and a right frequency of loading and duraction of loading is also case by case specific. Part of finding the right loading position is a discovery process as well, as noted in the photos above. Finding the fascicles you want to load, and the ones you do not want to load (painful) can be a challenging discovery process for you and your client. Finding the right slice of the pie to load, and the ones not to load takes experimentation. When it is the achilles complex, finding the safe However, if one is looking for a rough template to build from, brief, often, heavy painfree loads is a good template recipe to start with.

Here, in this Geremia et al article, "ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion."
They discovered that, "At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young’s modulus, by 86%.

Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Jeam Marcel Geremia, Bruno Manfredini Baroni, Maarten Frank Bobbert, Rodrigo Rico Bini, Fabio Juner Lanferdini, Marco Aurélio Vaz
European Journal of Applied Physiology
August 2018, Volume 118, Issue 8, pp 1725–1736

Holy twisted tibias Batman! What is going here in this R sided knee pain patient?

Screen Shot 2019-06-10 at 12.28.38 PM.png

In the 1st picture note this patient is in a neutral posture. Note how far externally rotated her right foot is compared to the left. Note that when you drop a plumbline down from the tibial tuberosity it does not pass-through or between the second and third metatarsals. Also note the incident left short leg

Screen Shot 2019-06-10 at 12.28.56 PM.png

In the next picture both of the patients legs are fully externally rotated. Note the large disparity from right to left. Because of the limited extra rotation of the right hip this patient most likely has femoral retro torsion. This means that the angle of her femoral head is at a greater than 12° angle. We would normally expect approximately 40° of external Rotation. 4 to 6° is requisite for normal gait and supination.

Screen Shot 2019-06-10 at 12.28.47 PM.png

In the next picture the patients knees are fully internally rotated you can see that she has an excessive amount of internal rotation on the right compare to left, confirming her femoral antetorsion.

Screen Shot 2019-06-10 at 12.28.38 PM.png

When this patient puts her feet straight (last picture), her knees point to the inside causing the patello femoral dysfunction right greater than left. No wonder she has right-sided knee pain!

Because of the degree of external tibial torsion (14 to 21° considered normal), activity modification is imperative. A foot leveling orthotic with a modified UCB, also inverting the orthotic is helpful to bring her foot somewhat more to the midline (the orthotic pushes the knee further outside the sagittal plane and the patient internally rotate the need to compensate, thus giving a better alignment).


a note on tibial torsion. As the fetus matures, The tibia then rotates externally, and most newborns have an average of 0- 4° of internal tibial torsion. At birth, there should be little to no torsion of the tibia; the proximal and distal portions of the bone have little angular difference (see above: top). Postnatally, the tibia should twist outward (externally) a total of 15 degrees until adult values are reached between ages 8 and 10 years of 23° of external tibial torsion (range, 0° to 40°).

Wow, cool stuff, eh? Dr Ivo Waerlop, one of The Gait Guys

#tibialtorsion #tibialversion #kneepain #thegaitguys #gaitanalysis

Whole-body coordination patterns may become partitioned in particular ways as a function of task requirements

Just some more thoughts for those who insist on coaching arm swing changes.

"Whole-body coordination patterns may become partitioned in particular ways as a function of task requirements.”

Toddlers actively reorganize their whole body coordination to maintain walking stability while carrying an object. Hsu WH1, Miranda DL2, Chistolini TL3, Goldfield EC4. Gait Posture. 2016 Oct;50:75-81

Today we seem to be going back to dual-tasking again, in this case utilizing the arms as balance assistance devices, amongst their other functions. However, we all know that walking with a hand in a pocket, or carrying something alters our ability to maximize their ballast-like function. Balanced walking involves freely swinging the limbs in pendullar motion. Changes in arm swing will change gait economy and efficiency. We have all run with a water bottle or bag/briefcase and know how that changes the symmetry and fluidity of our gait.

Today's research piece discusses toddlers and their function as they carry objects. "children immediately begin to carry objects as soon as they can walk. One possibility for this early skill development is that whole body coordination during walking may be re-organized into loosely coupled collections of body parts, allowing children to use their arms to perform one function, while the legs perform another. Therefore, this study examines: 1) how carrying an object affects the coordination of the arms and legs during walking, and 2) if carrying an object influences stride length and width." -Hsu et al.In this study of 10 toddlers with 3-12 months of walking experience were recruited to walk barefoot while carrying or not carrying a small toy. "Stride length, width, speed, and continuous relative phase (CRP) of the hips and of the shoulders were compared between carrying conditions. While both arms and legs demonstrated destabilization and stabilization throughout the gait cycle, the arms showed a reduction in intra-subject coordination variability in response to carrying an object. Carrying an object may modify the function of the arms from swinging for balance to maintaining hold of an object. The observed period-dependent changes of the inter-limb coordination of the hips and of the shoulders also support this interpretation. Overall, these findings support the view that whole-body coordination patterns may become partitioned in particular ways as a function of task requirements." -Hsu et al.

So once again we will say it, if you are coaching the arm swing YOU want, because you do not like what you see in your client, or if you think you are helping your client get more out of their body in terms of speed, power, efficiency or anything of the sort, know that there is a higher, smarter program running the show. And that program in the client’s CNS is smarter than you when it comes to what they need for whole-body coordination pattern generation.

Ode to the Popliteus

Remember the popliteus? To recap, it contracts at the initial contact phase of the walking gait cycle, to act as an accessory PCL (look HERE

https://www.thegaitguys.com/search?q=popliteus&f_collectionId=57d4982c91b18610c6ee3e0f

to read about that), then contracts eccentrically to slow the rate of internal rotation of the femur on the tibia until midstance, so as not to macerate the meniscus; It then contracts concentrically to accelerate the external rotation of the femur on the tibial plateau so it rotates faster then the tibia, to protect the meniscus as well. So, internal rotation of the femorotibial complex from initial contact to midstance and external rotation of the complex from midstance to preswing. Got it?

Now look at the video of this gal with L sided medial knee pain and past history of a left tibial plateau fracture in her youth. Do you see it? Hmmmm; doesn’t look like internal rotation does it? Don’t see it? Remember that the whole complex SHOULD be internally rotating until the swing phase leg passes the stance pase leg. See it now? Considering that the popliteus tested weak on the clinical exam, does this surprise you?

Agreed that there are many factors initiating internal rotation (and thus pronation) of the stance phase leg from initial contact to midstance, like plantar flexion, adduction and eversion of the talus, contraction of the lower leg anterior compartment muscles, eccentric contraction of the quads and hamstrings, just to name a few, can you see how (a least theoretically) one bad player can ruin the team?

Yes, popliteus rehab, along with abdominal core and foot core endurance exercises are in her future.

Dr Ivo Waerlop, one of The Gait Guys

#popliteus #kneepain #kneeproblem #thegaitguys #gaitanalysis

Arm swing, let the CNS drive the show

For those arm swing/pulsers/ COM and head over foot folks consider some more research below.
Let the CNS drive the show, it is what it is there for . . . The leg motor patterns are dominant, the arms are passive and "shape" and influence the leg swing as a balance and ballast effect. As we discuss in an upcoming podcast, to cross the arms in a pumping motion across the midline of the body means one has to have compromised scapular mechanics (mostly protraction) to afford that much humeral adduction. This means we are forcing thoracic rotation as well. This means we are reversing what we know is more true, that "arm motion is driven passively by rotation of the thorax (Pontzer et al., 2009), an idea which is supported by shoulder muscle EMG data" (and not thoracic rotation by arm swing). Why would we try to create more unnatural axial spin through the spine when we are actually trying to move forward in the sagittal plane? Why would we try to force more rotation through the spine when the function of the thoracopelvic canister (ie. the core) is to stabilize rotational /angluar momentum? Hmmmm, things to ponder.

"Previous modelling studies have clearly shown that motion of the arms effectively counterbalances the angular momentum of the lower extremities during running (Hamner & Delp, 2013; Hamner et al., 2010). It has further been suggested that arm motion is driven passively by rotation of the thorax (Pontzer et al., 2009), an idea which is supported by shoulder muscle EMG data, consistent with the shoulders as spring-like linkages (Ballesteros, Buchthal, & Rosenfalck, 1965). Our data are con- sistent with this idea, showing motion of the thorax to be in the opposite direction to that of the swinging leg. Pontzer et al. (2009) also suggested that motion of the thorax is driven passively by motion of the pelvis. However, our data shows that the thorax reaches its peak angular velocity earlier than the pelvis, indicating that thorax motion is not completely passively driven by pelvic movements."

-S.J. Preece et al. / Human Movement Science 45 (2016) 110–118

Tricks of the trade: Backward walking

image credit: https://pixabay.com/vectors/slide-sliding-falling-stickman-151861/

image credit: https://pixabay.com/vectors/slide-sliding-falling-stickman-151861/

A single event can generate asynchronous sensory cues due to variable encoding, transmission, and processing delays. Robert Peterka talks about this, along with posture compensation and system apportionment when it comes to balance and coordination of the visual, vestibular and proprioceptive systems. We have talked about that here on the blog in the past.

We are often looking for ways to “highlight” pathology and make it more visible in the clinical exam. Having your patient/client walk backwards is one of those tools.

Walking and remaining upright in the gravitational plane requires 3 integrated systems to work in concert with one another: the visual, vestibular and proprioceptive systems. Backwards walking requires a more coordinated effort AND IF there is a “hiccup” or extra demand on the system (the proprioceptive in this case), neurological processing can take a little longer, efforts can be delayed and the end result is a greater compensation is needed; this often makes pathology more evident.

Try having your client walk backwards when you are doing your exam and see what we mean. We think you will be surprised with the results : )

Dr Ivo Waerlop, one of The Gait Guys

Peterka RJStatler KDWrisley DMHorak FB. Postural compensation for unilateral vestibular loss. Front Neurol. 2011 Sep 6;2:57. doi: 10.3389/fneur.2011.00057. eCollection 2011.

temporal Shayman CSSeo JHOh YLewis RFPeterka RJHullar TE.Relationship between vestibular sensitivity and multisensory temporal integration. J Neurophysiol. 2018 Oct 1;120(4):1572-1577. doi: 10.1152/jn.00379.2018. Epub 2018 Jul 18.

Hawkins KABalasubramanian CKVistamehr AConroy CRose DKClark DJFox EJ. Assessment of backward walking unmasks mobility impairments in post-stroke community ambulators. Top Stroke Rehabil. 2019 May 12:1-7. doi: 10.1080/10749357.2019.1609182. [Epub ahead of print]

#backwardwalking #clinicalexam #thegaitguys #gaitpathology #clinicaltricksofthetrade

The “Dodgy Foot”, a UK runner’s dilemma.

Screen Shot 2019-05-05 at 9.45.42 AM.png

We get “help me” emails from all over the world on a regular basis. Recently we received this photo from a runner in Oxford, UK, often we cannot help, but when there is a story to tell that everyone can learn from, we offer what we can. This runner was frustrated, explaining a “dodgy foot”. We like the word.

dodg·y däjē/

-dishonest or unreliable; potentially dangerous; of low quality.

We can likely guarantee you that the solution here to this runner’s form issue is not wholly at the foot which appears “in toed” and slanted and appears ready to kick the back of the right heel, not to mention the knees that are about to brush together. Thus, merely working on their foot strike would be so remedial and corrupt that it would a crime.

Ivo and I do not take on cases via the internet because we cannot give all the information because we cannot examine the client, many do offer such services but people are not being given the whole story and we pledged long ago not to be part of the problem. Anyone who recommends exercises from things they see on a video gait analysis are basically doing the same disservice in our opinion. But sometimes, as in this case, their inquiry offers a opportunity for dialogue. This is one of those cases. I will not be presenting a solution, because I do not have the examination information I need, but I will propose a thought process that further investigation may afford progress towards some answers.

This appears like a non-pathologic cross over gait in my mind until proven otherwise, there may be other sources, causes and components, but when it quacks like a duck you’d be silly not to check for webbed feet. There are many component parts that leave someone with a cross over type gait (ie a narrow based gait, that if taken further, might as well result in running on a line). This runner even confirmed upon questioning that the left foot scuffs the inside of the right ankle/shin often, both sides scuff in fact but more left shoe on right shin. No Einsteinian epiphany there.

This means a narrow swing through (adducting) left limb.
This might mean stance and swing phase gluteus medius communication problems.
This might mean swing leg foot targeting problems.
This often suggests right, but sometimes both right and left, frontal plane pelvis sway problems which means pelvis control is challenged which means core lumbar stability control is challenged.
This means adaptive arm swing changes from the clean norm. Arm swing to a large degree is driven by the lower limb motor patterns, despite what some people will propose (dive into our archives to find some of those research articles).
This does NOT mean this runner has pain, or pain yet, or maybe never will have pain but there are many determinants of that which I will discuss below.

But, make no mistake, this is flawed gait mechanics, but that does not translate to injury, speed, outcome or pain. But when they come with those complaints attached, one would be foolish not to at least consider these biomechanics as a source.
The left swing leg is clearly targeting a more medial placement, meaning limb adduction (active or passive or both is to be determined) and this is a product of the cross over gait (unfamiliar with the cross over gait ? SEARCH our blog for the term, you will need a few hours of free time to get through it all). Some would call the cross over gait a lazy gait, but I would rather term it an efficient gait taken too far that it has now become a liability, a liability in which they can no longer stabilize frontal plane sway/drift. A wider gait on the other hand, as in most sprinters, is less efficient but may procure more power and the wider base is more stable affording less frontal plane drift. Just go walk around your home and move from a very narrow line walking gait to a wide gait and you will feel a more powerful engagement of the glutes. Mind you, this is not a fix for cross over gaits, gosh, if it was only that simple !

This runner might investigate whether there is right frontal plane drift, and if it is in fact occurring, find the source of the drift. It can come from many places on either limb. (This client says they are scuffing both inside ankles, which is not atypical and so we likely have drift on both right and left). We have discussed many of them here in various places on the blog over the years. Now as for “Why” the foot looks in toed, well that can also come from many places. Quite simply the adducted limb once it leaves toe off (a toe off that is most often a "low gear toe off", meaning not a medial/hallux toe off), can look like this. But, perhaps it is also a product of insufficient external rotation maintenance occurred during that left stance phase, affording more internal rotation which is being unchecked and observed here during early swing. Remember though, if this is in fact a cross over gait result, in this gait the limb approaches the ground unstacked (foot is too far inside a left hip joint plumb line) the foot will greet the ground at a far lateral strike and in supination. Pronation will thus be magnified and accelerated, if there is enough time before toe off. However, and you can try this on your own by walking around your home, put yourself in terminal stance at toe off. Make sure you have the foot inverted so you are toeing off the lateral toes (low gear toe off). Does this foot not look like the one in the photo ? Yes it does, now just lift the foot off the ground and you have reproduced this photo. And when combined with a right pelvis drift, the foot will sneak further medially appearing postured behind the right foot.

Keep this in mind as well, final pronation and efficient hallux (big toe) toe off does often not occur in someone who strikes the ground on a far lateral foot. I am sure this runner will now be aware of how poorly they toe off of the big toe, the hallux. They will tend to progress towards low gear toe off, off the lesser toes. This leaves the foot inverted and this is what you are seeing in her the photo above. That is a foot that is inverted and supinated and it carried through all the way through toe off and into early swing. It is a frequently component of the cross over gait, look for it, you will find it, often.

Final thoughts, certainly this can be an isolated left swing phase gluteus medius weakness enabling an adducted swing limb thus procuring a faulty medial foot placement, but it is still part of the cross over phenomenon. Most things when it comes to a linked human frame do not work in isolation. But i will leave you with a complicating factor and hopefully you will realize that gait analysis truly does require a physical exam, and without it you could be missing the big picture problem. What if she has a notable fixed anatomic internal tibia torsion on that left side. Yup, it could all be that simple, and that is not something you can fix, you learn to manage that one as a runner.

* Side bar rant: Look at any google search of runners photos and you will see this type of swing limb foot posturing often, far too often. That does not mean it is normal ! That means, that many people do this, but it cannot mean that it is optimal mechanics. And yes, you can take the stance that “I do it as well and i have no injuries or problems so what is the big deal?”. Our response is often “you do have an issue, it may be anatomic or functional, but you do have an asymmetrical gait and you think it is not a problem, YET”. And maybe you will run till you are 6 feet under and not have a problem because you have accommodated over many years and you are a great compensator, yes, some people get lucky. Some people also do not run enough miles that these issues express themselves clinically so lets be fair. But some of these people are reality deniers and spend their life buying the newest brace or gadget, trying a different shoe insert, orthotic or new shoe of the month and shop over and over again for another video gait analysis expert who can actually fix their pain or problem. And then there are those who have a 45 minute home exercise program that they need to do to keep their problems at bay, managing, not fixing anything. Or, they spend an hour a week on the web reading article after article on what are the top 4 exercises for iliotibial band syndrome for example. They shop for the newest Graston practitioner, the newest kinesio taping pattern, Voodoo bands, breathing patterns, compression socks etc. And sometimes they are the ones that say they still don't have a problem.You get the drift. Gosh darn it, find someone who knows what the hell they are doing and can help you fix the issues that are causing the problem. And yes, some of the above accoutrements may be assistive in that journey.

I have dealt with this unique toe off issue very frequently. Once you see something enough times, you learn all of the variations and subtle nuances that a problem can take on. But, trying to fit everyone into a similar solution model is where the novice coach, trainer or clinician will get into trouble. Trust us, it all starts with an examination, a true clinical physical examination. If one leaves the investigatory process to a series of screens or functional movement patterns, “activation” attempts, digital gait analysis or strength tests one is juggling chainsaws and the outcome you want is often not likely to occur. There is nothing wrong with making these components part of the investigation process, but on their own, they are not enough to get the honest answer many times. Of course, Ivo and i were not able to jump the pond and examine this runner with our own eyes and hands so today’s dialogue was merely to offer this runner some food for thought to open their mind to our thought process, in the hopes that they can find someone to help them solve the underlying problem and not merely make the gait look cleaner. Making someone’s walking or running gait look cleaner is not hard, but making it subconsciously competent and clean (without thought or effort) requires a fix to the underlying problem. We can ALMOST guarantee you that the solution here to this runner’s form issue is not wholly at the foot that looks in toed and slanted. Merely working on their foot strike would be so remedial and corrupt that it would a crime.

Dr. Shawn Allen, one of the gait guys

#gait, #gaitproblems, #crossovergait, #gaitanalysis, #gluteweakness, #toeoff

Right-sided knee pain in a cyclist...due to his hip?

This 54-year-old pilot presented to our office with pain on the outside of his right knee while cycling with his wife who is currently training for the triple bypass. The discomfort comes on later in the ride and is largely lateral. He thought it may be due to a seat position so he raised his seat up but then shortly developed lower back discomfort. Lowered the seat back down and presents to the office today. He is currently on a 54 cm Pierello road bike with a straight top tube.

Physical exam revealed him to have moderately limited internal rotation of the right hip which was approximately 5 degrees external rotation; left side had approximately 5 degrees of internal rotation. There was no significant leg length discrepancy or internal tibial torsion. Musculature, save for the long extensors the toes tests 5/5 and strong. Hip extension is 0 degrees bilaterally 5 flexion approximately 120 degrees with tightness mostly in the iliopsoas and some in the rectus femoris. Knee stability tests are unremarkable. Some patellofemoral discomfort with compression on the right. Palpable tightness in the right IT band.

X-rays revealed degenerative changes at the inferior aspect of the right acetabulum with a small spur an osteophyte formation.

His seat height was set so that at bottom dead center with the seat tube he had a 30 degree bend in his knee. Seat fore and aft position placed the knee over pedal spindle behind central axis of the pedal. His pedal stroke, seen on the video, reveals moderate internal rotation and medial displacement of the knee on the right side.

So what is going on?

It’s all about how folks compensate. This gent has very limited internal rotation of the right hip. Due to the nature of cycling, he is REALLY TRYING to get his 1st MTP down to the pedal to generate power. This is not unusual among cyclists, which is why what you think should be happening in gait does not always transfer over to cycling. in doing so, he MUST rotate SOMETHING forward (in this case his pelvis) medially to create the internal rotation needed. From this scenario, you can see how the posturing would increase knee valve and offer a mechanical advantage to the vastus lateralis, causing patello femoral dysfunction and knee pain.

So we did we do?

  • Moved his seat forward so that a line drawn from between the patella and tibial tuberosity fell through the center axis of the pedal

  • Angled his cleat so that he is able to have a greater progression angle moving forward, bringing his knee more into the sagittal plane

  • Began working on the hip to increase internal rotation working on the gluteus minimus, vastus lateralis and biceps femoris as well as hip capsule and ilio/ischio/pubofemoral ligaments

Dr Ivo Waerlop, one of The Gait Guys

#kneepain #cycling #hipproblem #femoralretrotorsion #thegaitguys #torsion

Knee hyperextension? Or does this photo suggest something more ?

You walk into the exam room and see a patient standing there just like this, What thoughts immediately flood your head ?
For me, I quickly start to juggle some things like, this:

Screen Shot 2019-05-16 at 2.53.10 PM.png

- anterior-meniscofemoral impingement ? Are his first words going to be knee pain ?
- tibial tuberosity/osgood type traction issue due to quad dominance? Are his first words going to be knee pain?
-loss of ankle rocker? Are his first words shin pain or plantar foot pain?
- tibialis posterior tendinitis ? Is he going to point to the medial ankle gutter or lower medial shin as his pain area?
-likely anterior pelvis tilt (hence weak lower abdominals), weak glutes, low back pain ?
-hamstring tightness, cramps, pain, posterior knee pain?

Just rambling real fast this morning after seeing this picture on an old hard drive.
Train your brain to think fast, think of possibilities top to bottom, don't wait for your patient to tell you where their problem is.
I play this game when i ask all my patients to walk to the back of the office to my exam room. I am watching, thinking, mental gymnastics.
Our jobs are to solve puzzles, put meaningful pieces together, to solve problems.
I use the analogy of building a puzzle. You open the box, search out the straight peripheral edges, then clump together colors, patterns. Your history and examination and gait observation should be about a process of putting together the most likely clinical picture and puzzle. And then you start to execute. Sometimes you have to walk things back, but you have to start somewhere.
But, if you wait until you get into the room, wait for the patient to say, "anterior knee pain" to start your thinking, it is easy to get tunnel vision and forget all of the other possible pieces of the puzzle that might be playing into that anterior knee pain.
REmember this, how your client moves , poorly or well, is not the problem, it is just how they are moving with the pieces and patterns available to them or how they are avoiding patterns that are painful. How they move is not the problem, it is their strategy. It is our job to find out why they are moving that way, and if it is relevant to their complaint.
Start big, funnel to small.

Shawn Allen, the other gait guy
#gait, #gaitanalysis, #gaitproblems, #clinicalthinking, #buildingpuzzles

Normal walking and running have a certain degree of vertical oscillation, but we do not want too much

Normal walking and running have a certain degree of vertical oscillation, but we do not want too much, we want the body to move along mostly horizontal path but we do need some dampening of impact loads. We do not want to waste too much energy bouncing up and down. This is mitigated quite a bit by hip and knee flexion, the knee is well positioned to do this the easiest in many cases. Pronation and ankle dorsiflexion do dampen loads as well.

Ivo and I just recorded a class on leg length discrepancies. Here are some factors to keep in mind if there is even the smallest leg length discrepancy, anatomic or functional.

-the short leg may hyperextend at the knee , externally rotate at the hip, as well as supinate the foot (this supination is relative ankle plantarflexion, which can set up increased protective tone in calf complex and reduced strength and exposure to anterior compartment).

-the long leg side may knee flex , internally rotate at the hip, and as well as pronate at the foot (this is relative ankle Dorsiflexion)

Both of these scenarios can be going on at the same time on either leg, or it can be only on one leg. We are not perfectly symmetrical organisms, so these things can set up to help us run and walk more effortlessly, to compensate to get the head and neck properly positioned (normalizing the visual and vestibular centers on the horizon) for balance and movement through the 3 cardinal planes, and to compensate around challenging anatomy or biomechanics.

This is a complex machine, with infinite abilities to compensate and cope. But what we see is the compensation, not the problem. The joint range losses in one joint, the excesses in another, the weakness in one area, the over protection in another, the failure to tolerate loads in another, are all ways of coping and keeping us moving, . . . . . . but sometimes at a cost. . . . . pain.

shawn and ivo, the gait guys

A sprinter with arch pain. Kohlers AVN: Not everything is always mechanically pain driven.

More ankle rocker is not always the right answer. An orthotic or stability shoe is not always the answer.

IMG_1723.jpg

Thus, not everything will have a mechanical solution and a corrective exercise. People without a medical background will not likely know what Kohlers Disease is or Mueller Weiss syndrome is for that matter (the adult form of AVN (avascular necrosis)).

So, an athlete coming to you with pain in the arch, you as a trainer, coach, and maybe even a therapist or doctor for that matter, might easily think:
"impaired ankle rocker", too much pronation, wrong shoe fit, etc . . . , . the list can be very long.

But sometimes, the problem is unrelated, or indirectly related.
This case of Kohlers/Mueller Weiss came in this week from out of state in a sprinter.
The pain started with a shoe change, and some pain in the arch region, dorsally in this case. Could it just be a massive stress response?, but it also could be Kohlers. Time will tell, but as you can see, the STIR sequence MRI shows a MASSIVE inflammatory response in the navicular bone.
And if it is Kohlers AVN, we are in the early inflammatory stage. You must catch this in the early stage, and try to not let it progress to avascular stage and necrosis and collapse. That means utmost protection, taht means 100% non weight bearing. If you break through the cortex, and this is early AVN, a deformed collapsed navicular will result, and that *could mean foot pain for life. Certainly impaired foot biomechanics.

Don't dismiss unchanging pain, or worsening pain. Sometimes it is not mechanical.
This case remains unknown right now, meaning massive stress response (ie pre stress fracture)? or AVN early stange? I am not taking a chance, bag it up and reimage several weeks later. Over treat this one, just in case.

Shawn Allen, the other gait guy

#AVN, #Kohlers, #Muellerweiss, #osteonecrosis, #sprinter, #archpain, #gait, #gaitproblems

Can a loss of stance phase internal hip rotation cause us to circumduct the swing leg? My thoughts this morning.

This is why i like to read articles, and then sit back and say, "but what else?".

pixabay.com

pixabay.com

Here is a study (link below) that said,
"It has long been held that hip abduction compensates for reduced swing-phase knee flexion angle, especially in those after stroke. However, there are other compensatory motions such as pelvic obliquity (hip hiking) that could also be used to facilitate foot clearance with greater energy efficiency. Our previous work suggested that hip abduction may not be a compensation for reduced knee flexion after stroke. "

Ok, maybe. . . . in stroke patients. We will give them that, but not the extrapolation to everyone else who is "non-stroke". They should have put that in their title, a little misleading in our opinion.

Clearly, hip abduction is a possible strategy for reduced knee clearance. Just because it is not a energy efficient strategy deemed by their study, it DOES NOT mean it is is not a possible pattern that is feasible for a client. People do not pick compensations by their calculated energy efficiency. The brain picks it because it is what makes sense at the time. Variables including pain avoidance, leg length discrepancy, weakness or strength or other variables are what the brain takes into account. One could argue that ANY compensation is less energy efficient than the optimal biomechanical pattern, but still we ALL compensate in some way every day around our weaknesses, limitations, pain, habitual patterns everyday. Energy efficiency is only one small variable, and i would argue that pain limitation or avoidance is a much stronger "choice" determinant that energy efficiency.

*But, here was my thought of the day, one that will percolate all day i suspect.
If a person has significant limitation of hip internal rotation on one side , completing swing phase on the opposite side is a challenge mechanically. Pelvis hike or obliquity is an option to help get that swing leg through. But is swing leg hip circumduction a possible strategy to help get past the internal hip rotation loss on the stance leg? Could it help hike the pelvis a little and assist the process as part of the package? We have to get that swing leg through. We can, and often do, work harder through the swing leg hip flexors, but that is not their job, they are perpetuators of swing, not drivers of the motion. This increased use and tone can be a contributing source of anterior hip pain. But, a more common strategy is to adductory twist the stance leg foot (spin it into external rotation) to help oblique the pelvis and thus get that swing leg through more effortlessly. But what about a little swing leg circumduction to add to that? MAybe a little of both is less drastic by just using one strategy ? Hmmmmmmm, something i need to be on the look out for. More on this another time.

We alter our kinematics to suit us, whether it is from pain, avoiding or minimizing pain, but i would fathom to guess that energy efficiency is not the top shelf choice. That is when we are healthy, strong, full ROM, pain free.

Shawn Allen, the other gait guy

#gait, #gaitproblems, #gaitanalysis, #hipinternalrotation, #adductorytwist, #abductorytwist, #hipcircumduction, #hipflexors, #kneeflexion, #swingphase, #gaitphases

J Biomech. 2019 Apr 18;87:150-156. doi: 10.1016/j.jbiomech.2019.02.026. Epub 2019 Mar 8.
Hip circumduction is not a compensation for reduced knee flexion angle during gait.
Akbas T1, Prajapati S2, Ziemnicki D2, Tamma P2, Gross S2, Sulzer J2.

Photo courtesy of Pixabay.com

Have you seen this?

Patterns. That’s what it’s about a lot of times. Dr Allen and I are always looking for patterns or combinations of muscles which work together and seem to cause what appear to be predictable patterns; like a weak anterior compartment and a weak gluteus maximus, or a weak gluteus medius and contralateral quadratus lumborum.

Here is an interesting story and a new combination that at least I have never seen before

I had a 11-year-old right footed soccer player from my son’s soccer team coming to see me with bilateral posterior knee pain which began during a soccer game while he was “playing up” on his older brothers team. He did need to do a lot of jumping as well as cutting. He is generally a midfielder/Forward. Well experienced player and “soccer is his life“.

My initial thoughts were something like a gastroc dysfunction or a Baker’s cyst. On examination, no masses or definitive swelling noted behind either knee. He did have tenderness to moderate degree over the right plantaris and tenderness as well as 4/5 weakness of the left popliteus. There was a loss of long axis extension of the talo crural articulations bilaterally with the loss of lateral bending to the right and left at L2-L3.

If you think about the mechanics of the right footed kicker (and try this while kicking a soccer ball yourself) it would be approximately as follows: left foot would be planted near the ball and the tibia/femur complex would be internally rotating well the foot is pronating and the popliteus would be eccentrically contracting to slow the rotation of the femur and the tibia. The right foot will be coming through and plantarflexion after a push off from the ball of the foot firing the triceps surae and plantaris complexes. He would be “launching“ off of the right foot and landing on his left just prior to the kick, causing a sudden demand on the plantar flexors; with the plantaris being the weak link. As the kicking leg follows through, the femur of the stance phase leg needs to externally rotate (along with the tibia) at a faster rate than the tibia (otherwise you could injure the meniscus) the popliteus would be contracting concentrically. A cleat, because it increases the coefficient of friction with the ground would keep the foot on the ground solidly planted and The burden of stress would go to the muscles which would be extremely routine leg and close chain which would include the semimembranosus/tendinosis  complex as well as the vastus medialis and possibly gracilis and short adductor, along with the popliteus.

I have to say and all of my years of practice I’ve never seen this combination type of injury before involving these two muscles specifically and am wondering if anyone else has seen this?

Dr Ivo Waerlop, one of The Gait Guys

#footproblem #gait #thegaitguys #soccerinjury #bilateralkneepain #popliteus #plantaris

image credit: https://commons.wikimedia.org/wiki/File:Slide2ACCA.JPG

image credit: https://commons.wikimedia.org/wiki/File:Slide2ACCA.JPG

Correcting movement problems : the power of opening a neurological window to change the brain's cortical representation.

Links to find the podcast:
Look for us on iTunes, Google Play, Podbean, PlayerFM and more.
Just Google "the gait guys podcast".

Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net


Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:

iTunes page:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2

Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Direct download URL: http://traffic.libsyn.com/thegaitguys/pod_5.15_-_51919.mp3


Permalink URL: http://thegaitguys.libsyn.com/correcting-movement-problems

Libsyn Directory URL: http://directory.libsyn.com/episode/index/id/9839468

Show notes:

Hop strength
https://www.ncbi.nlm.nih.gov/pubmed/30844991
J Strength Cond Res. 2019 May;33(5):1201-1207. doi: 10.1519/JSC.0000000000003102.
Reactive Strength Index and Knee Extension Strength Characteristics Are Predictive of Single-Leg Hop Performance After Anterior Cruciate Ligament Reconstruction.Birchmeier T1, Lisee C1, Geers B2, Kuenze C


https://www.ncbi.nlm.nih.gov/pubmed/28605231

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6110230/pdf/jpts-30-1069.pdf

** Our PODcast disclaimer:
This podcast is for general informational purposes only. It does not constitute the practice of medicine, nursing, rehab, treatment, therapy recommendations or anything of the sort. This podcast should not replace proper medical advise that should only be attained through proper medical channels that would entail a full medical  and/or biomechanical physical examination and/or appropriate diagnostic testing. No doctor-patient relationship is formed by listening to this podcast or any information gleaned from our writings or social media work.
The use of this information and the materials linked to the podcast is taken at the users own risk. This podcast and the content shared is not intended to replace or be a substitute for appropriate professional medical advise diagnosis or treatment. Users should not disregard or delay obtaining medical advice for any condition they have and should seek the advice and assistance from their providers for any such conditions.

The banana hallux. When the big toe curls upward

Screen Shot 2019-01-13 at 8.37.54 PM.png

Note: over-extension of the hallux and over-flexion of the 2nd toe. How can they both be so different at rest ? read on

This is common, but not commonly addressed. And, it can become a cause of symptoms.
Note how curled up into extension the hallux appears. This is just a representation of hyperextension of the distal phalange at the IP joint (interphalangeal joint).
This often occurs in hallux limitus/rigidus, where there is insufficient extension through the 1st MTP joint (metatarsophalangeal joint). In that condition, they client attempts to toe off, needing extension (dorsiflexion) at that joint, and they do not have it, so the extension can be found through arch collapse (1st metatarsal dorsiflexion) or through extension at the IP joint. Over time, form follows function and you will often see this presentation.

However, we do not need to see impaired ROM function at the 1st MTP joint, as in this case. This foot had full 1st MTP ROMs.
In this case, this toe represented massive imbalance between the long and short flexors and extensors. Specifically, increased use and strength in the EHL (extensor hallucis longus) and weakness and unawareness of how to even engage the short extensor (EHB).
Similarly, the pairing met the one we always see with this, that being weak and even difficulty of awareness to engage the FHL (flexor hallucis longus) and over-activity of the FHB (short flexor-flexor hallucis brevis).
There pairings: weak: EHB and FHL & overactive: EHL and FHB over time will result in this presentation.

In gait, you will note poor compentence and purchase of the hallux on the ground and thus a sharing of that load through overflexion hammering of the 2nd digit through increased FDL activity (note the great evidence of this with the thick obvious callus at the tip of the 2nd toe).
These clients can also often have pain at the plantar aspect of the Metatarsal head because of sesamoid imbalanced loading (sesamoiditis) as well as frank pain at the MTP joint dorsally or plantarward. One will often note a medial pinch callus on these feet medial to the metatarsal head, from a rotational spin toe off. Hallux valgus and bunion formation are also not uncommmon at all in this incompetent hallux presentation.
PS: the solution is so much more complex and involved than just towel-scrunches and marble pick up games. I mean, come on, we can do better that this team !
This requires some serious reteaching of how to use the foot, arch, tripod, windlass and foot-ground engagement skills.

Shawn and Ivo, the gait guys

#gait, #gaitproblems, #gaitcompensatins, #gaitanalysis, #bunions, #halluxvalgus, #sesamoiditis, #turftoe, #halluxlimitus, #pinchcallus, #bananatoe, #metatarsalgia, #thegaitguys, #hammertoe

3rd Wednesday of every month we teach a class online. LINK below

Screen Shot 2019-04-22 at 1.20.16 PM.png

Case Studies in Gait Analysis: Focus on the Short Leg
*link is below

*this is the online Continuing education class we did LAST MONTH, for those of you who could not get to the Wednesday evening class.
*our entire catalogue of lectures and seminars are all here on this site for CE/CEU

Case Studies in Gait Analysis: Focus on the Short Leg
- Review anatomical vs functional short leg
-Review the kinematics and kinetics of the short leg during the gait cycle
-View and discuss case studies looking at functional and anatomical short legs
-Predict pathomechanics that will arise from a short leg
-Propose remedies for the gait abnormalities seen

https://chirocredit.com/…/Chiropractic_Doc…/Biomechanics_211

Whaddaya Think of these Shoes?

Would you put YOUR patient/client/own feet in them?

Dr Ivo Waerlop, one of The Gait Guys, discusses a common manufacturers defect to look out for, especially in people with rear foot problems. You have to watch out for manufacturers defects in shoes : )

LEARNING OPPORTUNITY THIS WEDNESDAY NIGHT, MAY 15TH

Biomechanics 308
online.com 5 PST, 6 MST, & CST, 8 EST

#gait #thegaitguys #shoeproblem #manufacturersdefect#footproblem

https://vimeo.com/335772235