Have you seen this?

Patterns. That’s what it’s about a lot of times. Dr Allen and I are always looking for patterns or combinations of muscles which work together and seem to cause what appear to be predictable patterns; like a weak anterior compartment and a weak gluteus maximus, or a weak gluteus medius and contralateral quadratus lumborum.

Here is an interesting story and a new combination that at least I have never seen before

I had a 11-year-old right footed soccer player from my son’s soccer team coming to see me with bilateral posterior knee pain which began during a soccer game while he was “playing up” on his older brothers team. He did need to do a lot of jumping as well as cutting. He is generally a midfielder/Forward. Well experienced player and “soccer is his life“.

My initial thoughts were something like a gastroc dysfunction or a Baker’s cyst. On examination, no masses or definitive swelling noted behind either knee. He did have tenderness to moderate degree over the right plantaris and tenderness as well as 4/5 weakness of the left popliteus. There was a loss of long axis extension of the talo crural articulations bilaterally with the loss of lateral bending to the right and left at L2-L3.

If you think about the mechanics of the right footed kicker (and try this while kicking a soccer ball yourself) it would be approximately as follows: left foot would be planted near the ball and the tibia/femur complex would be internally rotating well the foot is pronating and the popliteus would be eccentrically contracting to slow the rotation of the femur and the tibia. The right foot will be coming through and plantarflexion after a push off from the ball of the foot firing the triceps surae and plantaris complexes. He would be “launching“ off of the right foot and landing on his left just prior to the kick, causing a sudden demand on the plantar flexors; with the plantaris being the weak link. As the kicking leg follows through, the femur of the stance phase leg needs to externally rotate (along with the tibia) at a faster rate than the tibia (otherwise you could injure the meniscus) the popliteus would be contracting concentrically. A cleat, because it increases the coefficient of friction with the ground would keep the foot on the ground solidly planted and The burden of stress would go to the muscles which would be extremely routine leg and close chain which would include the semimembranosus/tendinosis  complex as well as the vastus medialis and possibly gracilis and short adductor, along with the popliteus.

I have to say and all of my years of practice I’ve never seen this combination type of injury before involving these two muscles specifically and am wondering if anyone else has seen this?

Dr Ivo Waerlop, one of The Gait Guys

#footproblem #gait #thegaitguys #soccerinjury #bilateralkneepain #popliteus #plantaris

image credit: https://commons.wikimedia.org/wiki/File:Slide2ACCA.JPG

image credit: https://commons.wikimedia.org/wiki/File:Slide2ACCA.JPG

Sometimes you may need to put the cart before the horse...The knees, the glutes and reverse engineering ?

Footnotes 7 - Black and Red.jpg

We have talked about looking at things “from the bottom” up in the past, so we can understand things like why the vastus medialis is an external rotator in closed chain as are the semi membranosis and tendinosis. Perhaps we need to think more about this traveling proximally, where the knee effects the glutes. We found this paper looking at women with patello femoral problems and gluteal inhibition. Prospective studies have not found gluteal weakness to be a risk factor for patello femoral problems, but perhaps it is the other way around and patello femoral problems are a risk factor for gluteal weakness? It makes sense, especially if you consider the vastus lateralis like we talk about here and here.

“We hypothesize that muscle inhibition is present in the gluteal muscles of females with PFP compared to healthy controls and it is associated with both decreased subjective function and longer duration of symptoms.”

Dr Ivo Waerlop, one of The Gait Guys

Glaviano NRBazett-Jones DMNorte G. Gluteal muscle inhibition: Consequences of patellofemoral pain? Med Hypotheses. 2019 May;126:9-14. doi: 10.1016/j.mehy.2019.02.046. Epub 2019 Feb 27.

#gait #foot #patellofemoralpain #PFP #quadriceps #thegaitguys #glutes #gluteal muscles

Subtle clues to an LLD?

Leg length discrepancies, whether their functional anatomical, have biomechanical consequences north of the foot. This low back pain patient exhibited 2 signs. Can you tell what they are?

can you see the difference ?

can you see the difference ?

how about now?

how about now?

compare right to left

compare right to left

compare right to left

compare right to left

can you see the difference in the Q angles?

can you see the difference in the Q angles?

Look at the first picture and noticed how the left knee is hyper extended compared to the right. Sometimes we see flexion of this extremity. This is to "functionally shorten" that extremity.

Now look at the Q angles. Can you see how the left QL angle is greater than the right? This usually results from a long-term leg length discrepancy where the body is attempting to compensate by increasing the valgus angle of that knee, effectively shortening the extremity.

Dr Ivo Waerlop, one of The Gait Guys

#subtle #clues #LLD #leglengthdiscrepancy #leglengthinequality #thegaitguys #gaitabnormality

Low Back Pain? Check for Femoral Retrotorsion on the Same Side

note the right sided leg length discrepancy

note the right sided leg length discrepancy

right tibia is anatomically shorter

right tibia is anatomically shorter

more internal rotation available on the left side at the hip. Note the internal tibial torsion as well

more internal rotation available on the left side at the hip. Note the internal tibial torsion as well

very little internal rotation available at the right hip

very little internal rotation available at the right hip

This right handed concrete worker presented to our office with right-sided lower back pain. He was lifting a bag of concrete moving from left to right which she estimates weighing between 60 and 80 pounds. He did this repetitively throughout the day and subsequently developed right sided lower back pain. The pain is in the suprailiac region and is described as dull, achey. Is exacerbated by right rotation and right lateral bending.

His exam found him to have a right sided anatomical leg length discrepancy, tibial left (see above) and femoral retro torsion on the right with no internal rotation of the hip past 0 degrees (see picture of full internal rotation of the right hip and cmpare it with the left); left side had approximately 10 degrees internal rotation. He also has bilateral internal tibial torsion, R > L. Palpation findings revealed tightness in the lumbar multifidus and quadratus lumborum with a loss of lateral bending to the right at L2 through L4 and a loss of flexion about the right sacroiliac joint. Lower extremity reflexes were 2+ with bilateral symmetry; sensation to vibration was intact at the distal phalanges; motor strength was strong and graded as 5/5.

Think about the implications of his right-sided leg length discrepancy first. This places his foot and a relative supinated posture compared to the left. Remember that supination is plantar flexion, inversion and adduction.

His femoral retro torsion on the right limits his internal rotation at the hip. When his foot planted with a diminished progression angle secondary to the internal tibial torsion, and he has to rotate from left to right, very little, if any motion, can occur at the right hip and therefore must occur in the lumbar spine. Remember the lumbar spine has very limited range of motion begin with with most of that occurring at the L5-S1 junction, depending upon its anatomy. Now superimpose a long lever load and rotary force. Back pain!

We instructed him on proper lifting technique and also talked about keeping the shoulders and hips in the same plane when lifting or load. If he does need to lift a load and spin unilateral on his right lower extremity, we asked him to externally rotate the right lower extremity. He was treated with manipulation and neuromuscular acupuncture.

If you have somebody with unilateral lower back pain, think about the implications if they have any femoral torsion or version present

Dr. Ivo Waerlop, one of The Gait Guys.

#lowbackpain #LBP #femoralretrotorsion #femoral #torsion #gait #gaitanalysis #thegaituys

Motion control Shoes + Internal Tibial Torsion = Knee Pain

Thinking about putting a motion control shoe under that foot to control pronation? You had better make sure you make friends with the knee, as it will often (depending on the compensation) be placed OUTSIDE the SAGGITAL PLANE. Like Dr Allen has said many times before , the knee is basically a hinge joint placed between 2 ball and socket joints, and it is usually the one to start grumbling...

Learn more as Dr Ivo Waerlop of The Gait Guys explains in this brief video

#gait #Gaitanalysis #gaitguys #thegaitguys #kneepain #motioncontrolshoes #internaltibialtorsion


1st MTP Pain? The Biomechanics of the Big Toe...

Remember the rockers? We have done a series on this in the past. Remember there are three: heel, ankle and forefoot. We are going to concentrate on the forefoot today.

As a reminder, forefoot rocker occurs at the 1st metatarsal phalangeal joint (big toe knuckle) as the tibia progresses over the forefoot during forward movement. You NEED 50 degrees to do this competently; you SHOULD have 65 degrees. When you don’t, you have a condition called hallux limitus. This could be from a number of reasons, from overpronation in the mid foot, to a bunion, to faulty firing patterns of the muscles which help to descend the 1st ray (the extensor hallucinations brevis, the peroneus longs and the short flexors off the toes). Pretty much, ANYTHING that causes a dorsal and posterior shift of the 1st MTP axis will cause limited forefoot rocker.

So, the question is, “Do you know where 1st 1st MTP pain may be coming from? How familiar are you with the mechanics of that joint?”

Take a few minutes to review it in this video with Dr Ivo Waerlop of The Gait Guys.

#gait, #gaitanalysis, #1stmtp, #forefootrocker, #thegaitguys,

An often overlooked culprit...In hip and hamstring insertional pain

The "Deep 6". In order from proximal to distal; the piriformis, obturator internus, gemelli superior, obturator externus, gemelli inferior and quadratus femoris. They are primarily external rotators but have a small footprint and act primarily as stabilizers. Here is what we think and what we have to say about them...

Dr Ivo Waerlop, one of The Gait Guys

#deepsix, #gait, #thegaitguys, #hipexternalrotators, #hipstabilizers, #running

The Mighty Multifidus

The multifidi are important proprioceptive sentinels for the low back, as well as the rest of the body, for virtually every activity you do weight bearing, including gait. They are implicated in many instances of low back pain, especially folks with flexion or extension intolerance, since their fiber orientation and thus mechanical advantage (or disadvantage) is dependent upon whether or not you are maintaining a normal lumbar lordosis.

Modalities which boost their function are an excellent adjunct to the rehabilitation process. Since they are not under volitional control (go ahead, try and contract your L2/L3 multifidus), they are innervated by the vestibulospinal tract and we must use proprioceptive work to engage them. Dry Needling is one modality that can help them to become functional again.


"Significant difference was found in the percentage of change of muscle activation post needling between groups on the right side at level L4-5. A slight increase in the percentage of muscle activity, post procedure was observed in the dry needling group compared with the control group, although not significant in other segments examined. An improvement of back muscle function following dry needling procedure in healthy individuals was found. This implies that dry needling might stimulate motor nerve fibers and as such increase muscle activity."

see also our post here: https://tmblr.co/ZrRYjx14tXWrD

Dr Ivo Waerlop, one of The Gait Guys

J Back Musculoskelet Rehabil. 2015 Sep 6. [Epub ahead of print] The immediate effect of dry needling on multifidus muscles' function in healthy individuals. Dar G1,2, Hicks GE3.

#gait, #gaitanalysis, #multifidus, #lowbackpain, #proprioception,#thegaitguys

Do you know your Torsions? If so, then you here is what you need to know about twisted people...

Are you twisted? Are your patients/clients twisted? You know about tibial torsions from yesterday but do you know about femoral torsions?

To go along with yesterdays post, here is some more info on femoral torsions. If you missed it, click here

The degree of version is the angle between an imaginary line drawn through the condyles of the femur and an imaginary line drawn through the head and neck of the femur. This is often referred to as the femoral neck angle or FNA.

IMAGE SOURCE: Michael T Cibulka; Determination and Significance of Femoral Neck Anteversion,  Physical Therapy , Volume 84, Issue 6, 1 June 2004, Pages 550–558,  https://doi.org/10.1093/ptj/84.6.550

IMAGE SOURCE: Michael T Cibulka; Determination and Significance of Femoral Neck Anteversion, Physical Therapy, Volume 84, Issue 6, 1 June 2004, Pages 550–558, https://doi.org/10.1093/ptj/84.6.550

Beginning about the 3rd month of embryological development (Lanz and Mayet 1953) the femoral neck angle reaches 60 degrees and decreases, with growth, to about 40 degrees (with an average of 30-60 degrees) at birth. It then decreases 25-30 degrees by adulthood to 8-20 degrees with males being at the lower and females at the upper end of the range.

The FNA angle, therefore, diminishes about 1.5 degrees a year until about 15 years of age. Femoral neck anteversion angle is typically symmetrical from the left side to the right side.

What causes torsion in the first place? By the sixth month in utero, the lumbar spine and hips of the fetus are fully flexed, so perhaps it is positional. Other sources say it coincides with the degree of osteogenesis. There is a growing consensus that muscular forces are responsible, particularly the iliopsoas or possibly the medial and lateral hip rotators.

Additional changes can occur after birth, particularly with sitting postures. “W” sitting or “cross legged” sitting have been associated with altering the available range of motion and thus the FNA, with the range increased in the direction the hip was held in; W sitting causing increased internal rotation and antetorsion and cross legged causing external rotation and retro torsion.

image source: T Michaud, with permission

image source: T Michaud, with permission

As discussed previously, there are at least 3 reasons we need to understand torsions and versions, They can alter the progression angle of gait, they usually affect the available ranges of motion of the limb and they can alter the coronal plane orientation of the limb.

  1. fermoral torsions often alter the progression angle of gait. In femoral antetorsion torsion, the knees often face inward, resulting in an intoed gait and a decreased progression angle of the foot. This can be differentiated from internal tibial torsion (ITT) by looking at the tibia and studying the position of the tibial tuberosity with respect to the foot, particularly the 2nd metatarsal. In ITT, the foot points inward while the tibial tuberosity points straight ahead. In an individual with no torsion, the tibial tuberosity lines up with the 2nd metatarsal. If the tibial tuerosity and 2nd met are lined up, and the knees still point inward, the individual probably has femoral ante torsion. Remember that a decreased progression angle is often associated with a decreased step width whereas an increased angle is often associated with an increased step width.

  2. Femoral torsions affect available ranges of motion of the limb. We remember that the thigh leg needs to internally rotate the requisite 4-6 degrees from initial contact to midstance (most folks have 40 degrees) If it is already fully internally rotated (as it may be with femoral retro torsion), that range of motion must be created or compensated for elsewhere. This, much like internal tibial torsion, can result in external rotation of the affected lower limb to create the range of motion needed.

  • Femoral retro torsion results in less internal rotation of the limb, and increased external rotation.

  • Femoral ante torsion results in less external rotation of the limb, and increased internal rotation.

          3. femoral torsions usually do not effect the coronal plane orientation of the lower limb,      since the “spin” is in the transverse or horizontal plane.

The take home message here about femoral torsions is that no matter what the cause:

  • FNA values that exist one to two standard deviations outside the range are considered “torsions”

  • Decreased values (ie, less than 8 degrees) are called “retro torsion” and increased values (greater than 20 degrees) are called “ante torsion”

  • Retro torsion causes a limitation of available internal rotation of the hip and an increase in external rotation

  • Ante torsion causes an increase in available internal rotation of the hip and decrease in external rotation

  • Femoral ante torsion will be perpetuated by “W” sitting (sitting on knees with the feet outside the thighs, promoting internal rotation of the femur)

  • Femoral antetorsion will be perpetuated by sitting cross legged, which forces the thigh into external rotation.

Michael T Cibulka; Determination and Significance of Femoral Neck Anteversion, Physical Therapy, Volume 84, Issue 6, 1 June 2004, Pages 550–558, https://doi.org/10.1093/ptj/84.6.550


Souza AD, Ankolekar VH, Padmashali S, Das A, Souza A, Hosapatna M. Femoral Neck Anteversion and Neck Shaft Angles: Determination and their Clinical Implications in Fetuses of Different Gestational Ages. Malays Orthop J. 2015;9(2):33-36.

Why is that joint range of motion absent? Here are some thoughts.

Photo courtesy of Pixabay.com

Photo courtesy of Pixabay.com

Is this how you think ? It is how we approach puzzles. . . .

Said client has a loss of internal hip rotation (pick any joint for that matter). . . . .

-is the loss of rotation present because they cannot get the rotation range because there is weakness of the internal rotators . . .

- or perhaps external rotators more dominant, combined with the weakness of the internal rotators

-or, is the loss there because of neuro-protective shortness/tightness because the brain feels that the said internal rotation is a vulnerable range (pain, instability), a range where it cannot protect the joint ?

-or, is it a combination of the above? (not to dismiss other processes of course, such as pelvis, knee or foot mechanical issues, OA, pain etc).

If one does not examine a client, how are they supposed to know this all important information?

*What shows up on a functional screen is merely what they are capable of doing/ recruiting/ engaging. It does not tell you why, nor narrow down the causal possibilities. Hence, driving more internal rotation range is silly, driving more strength into the internal rotator is likewise silly. And, merely adding global strength just might provide the overall presentation with more armor, a better coping strategy. Hence, strength first is not always a brilliant solution.

IF all you have is a hammer, everything is going to look like a nail, or you'll at least treat everything like a simple nail.

Asymmetry seems to matter with pathology.

image credit: https://commons.wikimedia.org/wiki/File:PSM_V46_D167_Outer_surface_of_the_human_brain.jpg

image credit: https://commons.wikimedia.org/wiki/File:PSM_V46_D167_Outer_surface_of_the_human_brain.jpg

When you have low back pain, your gait is apt to be asymmetrical

...And that is just what this study showed. It looked at 82 right leg dominant folks with slightly less than 1/2 of them havong low back pain. The folks with lower back pain spent more time on their non dominant leg at the beginning of a gait cycle and on their dominant leg at the end of it. Not surprising that they wanted to find a more stable base or center their COP over the weight bearing foot, especially in light to the fact that the back has such poor cortical representation.

Sung PS, Danial P. A Kinematic Symmetry Index of Gait Patterns Between Older Adults With and Without Low Back Pain. Spine (Phila Pa 1976). 2017 Dec 1;42(23):E1350-E1356. doi: 10.1097/BRS.0000000000002161.

Shoe causing knee pain? You decide… 


This gentleman presented with left-sided knee pain at the medial collateral ligament. His left foot was planted when he rotated to the left. Take a close look at the shoes in the picture. If you look closely, you will notice the right shoe is tilted on its axis due to a rear foot to forefoot deformity (forefoot supinatus)and the left shoe upper was assembled canted on its axis, Most likely in manufacturing defect. Can you see the subtle valgus in the left shoe rearfoot?

Think of the implications of a shoe with this orientation. Putting the rearfoot in valgus “prepronates“ the foot, causing medial rotation of the tibia and femur and increase valgus stress on the knee, stressing the medial collateral ligament and stabilizing complex. This will most likely manifest itself as anterior rotation of the ilium on the left-hand side with relative posterior rotation on the right and a clockwise Pelvic distortion pattern. With the foot planted on the left side and it being pre-pronated, can you see how the rotation to the left leaves a greater amount of external rotation that must occur to just get the foot to neutral, never mind supination for stability and pushoff?
What about the popliteus having to work on time to assist and extra rotation and the appropriate femoral/tibial rotation ratios to spare the medial meniscus?

These are the kind of things to keep us awake at night…

And why does this guy have hip pain?

line up the center of the heel counters with the outsoles, and what do you see?

line up the center of the heel counters with the outsoles, and what do you see?

can you see how the heel counter is centered on the outsole, like it is supposed to be

can you see how the heel counter is centered on the outsole, like it is supposed to be

notice how the heel counter of the shoe is canted medially on the outsole of the shoe, creating a varus cant

notice how the heel counter of the shoe is canted medially on the outsole of the shoe, creating a varus cant

Take a guy with lower back and left sided sub patellar pain that also has a left anatomically short leg (tibial) and bilateral internal tibial torsion and put him in these baby’s to play pickleball and you have a prescription for disaster.

Folks with an LLD generally (soft rule here) have a tendency to supinate more on the short leg side (in an attempt to make the limb longer) and pronate more on the longer leg side (to make the limb shorter). Supination causes external rotation of the lower limb (remember, we are trying to make the foot into a rigid lever in a “normal” gait cycle). this external rotation with rotate the knee externally (laterally). Folks with internal tibial torsion usually rotate their limb externally to give them a better progression angle (of the foot) so they don’t trip and fall from having their feet pointing inward. This ALSO moves the knee into external rotation (laterally), often moving it OUTSIDE the saggital plane. In this case, the knee, because of the difference in leg length AND internal tibial torsion AND the varus cant of the shoe, has his knee WAY OUTSIDE the saggital plane, causing faulty patellar tracking and LBP.

Moral of the story? When people present with a problem ALWAYS TAKE TIME TO LOOK AT THEIR SHOES!

All that creaks may not be pathological...

image source: https://commons.wikimedia.org/wiki/File:Runners-knee_SAG.jpg

image source: https://commons.wikimedia.org/wiki/File:Runners-knee_SAG.jpg

Gal with creaky knees? Patellar crepitus? Does all that noise mean something?

Well, it means that knee function is suboptimal and more than likely, there is abnormal patellar tracking. But is that clinically significant? The answer is ....maybe.

This study (1) looked at over 300 women, about 1/2 with patellofemoral pain and half without looking at the following outcomes: 

  • the knee crepitis test
  • anterior knee pain scale
  • self reported knee pain in the last month
  • knee pain after 10 squats 
  • knee pain after climbing 10 stairs

They found that if you had patello femoral pain, you were 4 times more likely to have crepitus than not, but there was no correlation of crepitus with  Knee crepitus had no relationship with function, physical activity level , worst pain, pain climbing stairs or pain squatting. 

We would have loved to have seen any correlation in this group with knee valgus angles (i.e. "Q" angles 2 ) and how much tibial or femoral torsion was present (as these things change pressure and contact area 3), but that will hopefully be found in the literature elsewhere. 


1. , Pazzinatto MFPriore LBDFerreira ASBriani RVFerrari DBazett-Jones DAzevedo FM. Knee crepitus is prevalent in women with patellofemoral pain, but is not related with function, physical activity and pain. Phys Ther Sport. 2018 Sep;33:7-11. doi: 10.1016/j.ptsp.2018.06.002. Epub 2018 Jun 6.

2. Emami MJ1, Ghahramani MHAbdinejad FNamazi H. Q-angle: an invaluable parameter for evaluation of anterior knee pain. Arch Iran Med. 2007 Jan;10(1):24-6.

3. Thay Q. Lee, PhD, Garrett Morris, BS, Rick P. Csintalan, MDThe Influence of Tibial and Femoral Rotation on Patellofemoral Contact Area and Pressure Orthop Sports Phys Ther 2003;33:686-693.

Recalcitrant medial knee pain? Have you heard about the "Problematic Pes"...

image source: https://commons.wikimedia.org/wiki/File:Slide2DADE.JPG

image source: https://commons.wikimedia.org/wiki/File:Slide2DADE.JPG

Recalcitrant knee pain just below the medial tibial plateau? Worse with sprints, hills and after running a while? It may be the pes anserine insertion(s).

Made up of the tibial insertions, from anterior to posterior, of the sartorius, gracilis and semitendinosis which lie superficial to the distal tibial insertion of the superficial medial collateral ligament. This structure is named from the way it looks, like a goose's foot (anserine pes), rather than its anatomical location. The pes anserine bursa lies below it and between the MCL and hamstring tendons and can be subject to compressive forces if compromised in some way, by injury or pathomechanics

The muscles of the pes anserine arise from three different compartments in the thigh. The sartorius originates from the anterior compartment,  the gracilis from the medial compartment and the semitendinosus, the posterior compartment. Their varied origins, paths, and actions, as these muscles approach their insertion all add stability to the medial aspect of the knee.

During an ideal gait cycle, the sartorius fires from toe off through nearly terminal swing, the semitendinosus from mid swing through nearly loading response, with a brief firing at toe off  and gracilis tonically throughout stance phase with bursts from terminal swing through initial contact and again from pre swing to initial swing.

image source: Tom Michaud, with permission

image source: Tom Michaud, with permission

We remember that the abdominals should initiate thigh flexion with the iliopsoas, rectus femoris, tensor fascia lata and sartorius perpetuating the motion. Sometimes, when the abdominals are insufficient, we will substitute other thigh flexors, often the psoas and/or rectus femoris, but sometimes sartorius, especially in people with excessive midfoot pronation. Think about all of the medial rotation occurring at the knee during excessive midfoot pronation and when overpronation occurs, the extra compensatory external rotation that must occur to try and bring the knee back into the sagittal plane. The sartorius is positioned perfectly for this function, along with the semitendinosus which assists and external rotation and closed chain with the innocent pes anserine bursa directly beneath. This is complemented by the compressive forces of this gracilis firing because of the increased coronal plane motion occurring at the pelvis.

Call it pes anserinus bursitis or pes anserine tendinitis but they both add up to medial knee pain when the thigh needs help flexing.

Look to this troublesome trio the next time you have recalcitrant medial knee pain.



Gupta, Aman & Saraf, Abhinesh & Yadav, Chandrajeet. (2013). ISSN 2347-954X (Print) High-Resolution Ultrasonography in PesAnserinus Bursitis: Case Report and Literature Review. 1. 753-757. 


 Michaud T: in Foot Orthoses and Other Forms of Conservative Foot Care Williams & Wilkins, 1993 Pp. 50-55

 Michaud T: in Human Locomotion: The Conservative Management of Gait-Related Disorders 2011

wider, flatter, less mobile feet

Screen Shot 2018-05-03 at 6.59.44 AM.png

If you have patella femoral pain, the older you get, the wider (probably for increased proprioception), flatter (possibly due to loss of intrinsic strength and extensor tone) and less mobile (for stability) you feet become. 


"This study observed that in individuals with PFP, those aged 40–50 years had less foot mobility than younger adults aged 18–29 years, as evidenced by measures of midfoot height mobility and foot mobility magnitude. These differences represented a moderate effect size, and exceed the intra-rater minimal detectable change (MDC 95%) associated with these measures (midfoot height mobility 2 mm; foot mobility magnitude 3.1 mm). The differences between age groups were specific to both midfoot height mobility and foot mobility magnitude; however, there were no differences in midfoot width mobility."


Tan JM, Crossley KM, Vicenzino B, Menz HB, Munteanu SE, Collins NJ. Age-related differences in foot mobility in individuals with patellofemoral pain. Journal of Foot and Ankle Research. 2018;11:5. doi:10.1186/s13047-018-0249-2.

free full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5815185/


A bit about the QL...


As we have said in previous posts,  though they can’t act independently we like to think to think of the QL as having two divisions. The lower division arises from the medial portion of the iliac crest and adjacent iliolumbar ligament and inserts onto the transverse processes of the lumbar vertebrae, in the coronal plane from lateral to medial and in the saggital plane from posterior to anterior. The upper division arises from the lumbar transverse processes of the upper 4 lumbar vertebrae and insert into the inferior border of the 12th rib, running in the coronal plane from medial to lateral and in the saggital plane from anterior to posterior; about half of the fascicles of this second division act on the twelfth rib and the rest act on the lumbar spine.

The QL is primarily a coronal plane stabilizer causing lateral bending to the ipsilateral side when the foot is planted as well as posterior rotation of the lumbar spine on the weight bearing side.   When acting unilaterally without the ipsilateral foot fixed on the ground, it can raise the ilia on the side of contraction. It is active during single limb support during stance phase of gait on the contralateral side (along with the external oblique) to elevate the ilium. This is coupled with the ipsilateral anterior fibers of the gluteus medius and minimus pulling the iliac crest toward the stable femur. Sahrmann states “the QL is optimally situated to provide control of lateral flexion to the opposite side via its eccentric contraction to provide control of the return from lateral flexion via its concentric contraction. The muscle is also positioned to play a role in the rotation that occurs between the pelvis and spine during walking”.

Acting bilaterally, it extends the lumbar spine, deepening the lordosis and acting to limit anterior shear of the vertebral bodies.

It is also able to stabilize the 12th rib during forced expiration, thus acting as an accessory muscle of respiration. This fixation is important when we need to superimpose pelvic movements upon it. Furthermore, it increased activation in response to increasing compression in static upright standing postures.

Here is a video of a low back screen we often use

Should you rotate your shoes?

Rotate your shoes more often? Maybe not, if you are concerned about plantar pressures. But do increased plantar pressures actually cause injuries? That is the million dollar question, isn't it?


from this paper:

  • Footwear characteristics have been implicated as a cause of foot pain (1)
  • Ill fitting footwear has been associated with foot pain.(2)
  • Individually fitted sport shoes were found to be effective in reducing the incidence of foot fatigue.(3)
  • There is an association between using inappropriate footwear and injuries.(4) 
  • An association between injuries and the age of sport shoes has been reported. (5)
  • The recommendations are that running shoes need to be changed every 500 - 700 kilometres as they lose their shock-absorbing capabilities.(6)
  • Elevated plantar pressures cause increased foot pain in people with cavus feet.(7)

"Walking plantar pressures in running shoes need to be investigated. There are no pedobarographic studies in the literature that compare new with old running shoes. We hypothesized that old running shoes transmitted higher plantar pressures as compared to new running shoes. If so, are old running shoes detrimental to our feet? The purpose of this study was to see whether the mean peak pressures & pressure-time integrals exerted at the plantar surface of feet were higher when using old running shoes as compared to new running shoes.

Plantar pressure measurements in general were higher in new running shoes. This could be due to the lack of flexibility in new running shoes. The risk of injury to the foot and ankle would appear to be higher if running shoes are changed frequently. We recommend breaking into new running shoes slowly using them for mild physical activity.

 Rethnam U, Makwana N. Are old running shoes detrimental to your feet? A pedobarographic study. BMC Research Notes. 2011;4:307. doi:10.1186/1756-0500-4-307. link to FREE FULL TEXThttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3228510/


  1. Grier TL, Knapik JJ, Swedler D. et al. Footwear in the United States Army Band: Injury incidence and risk factors associated with foot pain. Foot (Edinb) 2011;21(2):60–5. [PubMed]
  2. Burns SL, Leese GP, McMurdo ME. Older people and ill fitting shoes. Postgrad Med J.2002;78(920):344–6. doi: 10.1136/pmj.78.920.344. [PMC free article] [PubMed] [Cross Ref]
  3. Torkki M, Malmivaara A, Reivonen N. et al. Individually fitted sports shoes for overuse injuries among newspaper carriers. Scand J Work Environ Health. 2002;28(3):176–83. [PubMed]
  4. Taunton JE, Ryan MB, Clement DB. et al. A prospective study of running injuries: the Vancouver Sun Run "In Training" clinics. Br J Sports Med. 2003;37:239–44. doi: 10.1136/bjsm.37.3.239.[PMC free article] [PubMed] [Cross Ref]
  5. van Mechelen W. Running injuries: A review of the epidemiological literature. Sports Med.1992;14(5):320–35. doi: 10.2165/00007256-199214050-00004. [PubMed] [Cross Ref]
  6. Fredericson M. Common injuries in runners: diagnosis, rehabilitation, prevention. Sports Med.1996;21(1):49–72. doi: 10.2165/00007256-199621010-00005. [PubMed] [Cross Ref]
  7. Wegener C, Burns J, Penkala S. Effect of neutral-cushioned running shoes on plantar pressure loading and comfort in athletes with cavus feet: a crossover randomized controlled trial. Am J Sports Med. 2008;36(11):2139–46. doi: 10.1177/0363546508318191. [PubMed] [Cross Ref]

How can feet relate to golf swing?

This 52 year old right handed gentleman presented with pain at the thoracolumbar junction after playing golf. He noticed he had a limited amount of “back swing” and pain at the end of his “follow through”.

Take a look a these pix and think about why.

Full internal rotation

Full internal rotation

full external rotation

full external rotation

full internal rotation

full internal rotation

full external rotation

full external rotation





Hopefully, in addition to he having hairy and scarred legs (he is a contractor by trade), you noted the following

  • Top: note the normal internal rotation of the right hip; You need 4 degrees to walk normally and most folks have close to 40 degrees. He also has internal tibial torsion.
  • second picture: loss of external rotation of the right hip. Again, you need 4 degrees (from neutral) of external rotation of the hip to supinate and walk normally.
  • third picture: normal internal rotation of the left hip; internal tibial torsion
  • 4th picture: limited external rotation of the left hip, especially with respect ti the amount of internal rotation present; this is to a greater degree than the right
  • last 2 pictures: note the amount of tibial varum and tibial torsion. Yes, with this much varum, he has a forefoot varus.

The brain is wired so that it will (generally) not allow you to walk with your toes pointing in (pigeon toed), so you rotate them out to somewhat of a normal progression angle. If you have internal tibial torsion, this places the knees outside the saggital plane. (For more on tibial torsion, click here.) If you rotate your extremity outward, and already have a limited amount of range of motion available, you will take up some of that range of motion, making less available for normal physiological function. If the motion cannot occur at the knee or hip, it will usually occur at the next available joint cephalad, in this case the spine.

The lumbar spine has a limited amount of rotation available, ranging from 1.2-1.7 degrees per segment in a normal spine (1). This is generally less in degenerative conditions (2).

Place your feet on the ground with your feet pointing straight ahead. Now simulate a right handed golf swing, bending slightly at the waist androtating your body backward to the right. Now slowly swing and follow through from right to left. Note what happens to your hips: as you wind back to the right, the left hip is externally rotating and the right hip is internally rotating. As you follow through to the left, your right, your hip must externally rotate and your left hip must externally rotate. Can you see how his left hip is inhibiting his back swing and his right hip is limitinghis follow through? Can you see that because of his internal tibial torsion, he has already “used up” some of his external rotation range of motion?

If he does not have enough range of motion in the hip, where will it come from?

he will “borrow it” from a joint more north of the hip, in this case, his spine. More motion will occur at the thoracolumbar junction, since most likely (because of degenerative change) the most is available there; but you can only “borrow” so much before you need to “Pay it back”. In this case, he over rotated and injured the joint.

What did we do?

  • we treated the injured joint locally, with manipulation of the pathomechanical segments
  • we reduced inflammation and muscle spasm with acupuncture
  • we gave him some lumbar and throacolumbar stabilization exercises: founders exercise, extension holds, non tripod, cross crawl, pull ups
  • we gave him foot exercises to reduce his forefoot varus: tripod standing, EHB, lift-spread-reach
  • we had him externally rotate both feet (duck) when playing golf

The Gait Guys. Helping you to store up lots “in your bank” of foot and gait literacy, so you can help people when they need to “pay it back”, one case at a time.

(1) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2223353/

(2) http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3705911/