Proprioceptive afferent inputs can control the timing and pattern of locomotion. When disease is present, or when injury has compromised the neuro-biomechanical linkages, slow postural responses can trump what timely responses are necessary to ensure for smooth locomotion.
When many people think of balance and locomotion, the cerebellum is often a top topic for it is important for movement control and plays a particularly crucial role. Thus, a most characteristic sign of cerebellar damage is walking ataxia. It is not known how the cerebellum normally contributes to walking, although recent work suggests that it plays a role in the generation of appropriate patterns of limb movements, dynamic regulation of balance, and adaptation of posture and locomotion through practice. (1)
Reflex pathways exist which regulate the timing of the transition from stance to swing, and control the magnitude of ongoing motoneuronal activity. During locomotion there is a closely regulated feedback from the various sensory receptors in the skin, joints, muscles, tendons, ligaments and other tissues, this is referred to as afferent feedback. When there is damage to these sensory “organs”, or the pathways into, or out of, the central nervous system locomotion becomes difficult.  We can see this in the video case above. This is a case of Chronic Inflammatory Demyelinating Polyradiculopathy (CIDP). It is an immunne-mediated inflammatory disorder of the peripheral nervous system whereby the myelin sheath of neurons is slowly eroded and as a result, the affected nerves and pathways fail to respond well rendering numbness, paresthesias, pain and progressive muscle weakness along with loss of deep tendon refexes. Obviously this will render locomotion fatiguing and difficult. Falls are not uncommon as you can see in the video.
Timing and coordination is everything in gait. When a portion of the system is compromised from injury or neurologic deficit, locomotion becomes strained.  There is an intricate balance between the extensor and flexor muscles.  We found this quote by Lam and Pearson particularly relevant to today’s discussion and video.

“Proprioceptive feedback from extensor muscles during the stance phase ensures that the leg does not go into swing when loaded and that the magnitude of extensor activity is adequate for support. Proprioceptive feedback from flexor muscles towards the end of the stance phase facilitates the initiation of the swing phase of walking. Evidence that muscle afferent feedback also contributes to the magnitude and duration of flexor activity during the swing phase has been demonstrated recently. The regulation of the magnitude and duration of extensor and flexor activity during locomotion is mediated by monosynaptic, disynaptic, and polysynaptic muscle afferent pathways in the spinal cord. In addition to allowing for rapid adaptation in motor output during walking, afferent feedback from muscle proprioceptors is also involved in longer-term adaptations in response to changes in the biomechanical or neuromuscular properties of the walking system.” (2)

Gait and any form of locomotion are highly complicated with many pieces necessary to achieve clean, smooth, coordinated motion.  Failure in only one piece of the puzzle can result in profound unhinging of the entire system because of the entangled nature of the feedback loops.  
Nothing dramatic today gang, just some thoughts that came to us after seeing this client and doing some reading to keep up on things.  We thought this would be a nice follow up to Monday’ blog post on proprioception.
Shawn and Ivo
the gait guys
1. Neuroscientist. 2004 Jun;10(3):247-59.

Cerebellar control of balance and locomotion.

2. Adv Exp Med Biol. 2002;508:343-55.

The role of proprioceptive feedback in the regulation and adaptation of locomotor activity. Lam T1, Pearson KG.