Yep, these shoes stink for this gal...

IMG_6882.jpg

Look at the left shoe and compare it to the right. See how the upper is canted on the outsole? This “varus cant” can create lots of problems or could actually be beneficial, believe it or not, depending upon the pathology.

In this particular persons story, it was NOT a good thing. They have an anatomical short leg on the left-hand side. If you remember from following us here in the past, generally speaking, the shorter leg tide tends to be more supinated and the forefoot tends to be in more varus. This means more of a “reach” with that foot during the contact phase of gait, Whether that’s running or walking. This generally means that the forefoot will pronate more on the long leg side.

This shoe “defect“ may actually be benefit for someone who has too much rear or mid foot pronation as it would “delay” pronation by starting to rearfoot in an inverted position at heel strike.

The Fix?

You could grind the sole into varus an equal amount to equal the varus cant. In our opinion, not a good idea.

You could return the shoe (that’s what this person is doing) and get another one

In addition, you could…

Give the person a 3 mm sole lift to correct for the leg length discrepancy

Make sure they have adequate range of motion in the first ray on the short leg side to be be able to plantar flex the 1st ray and reach the ground

Make sure they have adequate control of the core musculature as well as foot intrinsic musculature during stance phase.

Dr Ivo Waerlop, one of The Gait Guys

#badshoes #theshoeistheproblem #forefootvarus #leglengthdifference
#gaitproblem

When you see this, you should be thinking one of 3 possible etiologies...

Cardinal sign of either a forefoot supinatus/forefoot varus or collapsing midfoot

I was hiking behind this young chap over the weekend along with my son and friends. Note the amount of calcaneal eversion present on the right side that is not present on the left. Also note the increased progression angle of the right foot and subtle circumduction of the extremity.

In my experience, you would generally see this much calcaneal diversion and one of three scenarios:

1. Moderate leg length discrepancy with the increased calcaneovalgus occurring on the longer leg side. This would support the amount of circumduction were seeing on the right side.

2. When there is a forefoot supinatus present and and inadequate range of motion available in the midfoot and/or forefoot. This is most likely the case here.

3. In moderate To severe midfoot collapse. This is clearly not the case as the medial aspect of the shoe is usually “blown out”.

Next time you see an everting rearfoot, think about these three possible etiologies.

Dr Ivo Waerlop, on of The Gait Guys

#evertedrrarfoot #calcanealvalgus #shortleg #forefootsupinatus #forefootvarus #gaitanalysis #thegaitguys

When the big toes head...East? Whats the deal?

IMG_6721.JPG

What is this?

IMG_6722.JPG

A sandal gap deformity or hallux varus creates an expanded first interspace between the hallux and the rest of the toes. It is a likened to the gap caused by wearing a sandal but is actually a normal variant. It can occasionally be developmental. In the fetus, it can be a soft marker for other fetal anomalies such as Downs syndrome, an amniotic band or ectrodactyly. It’s considered benign, however in this individual could have been developmental.

IMG_6727.JPG

Notice how he has external tibial torsion (when his knees are pointing forward his feet point to the outside). External tibial torsion generally, because of the orientation of the foot, causes the center of gravity to fall medially thus the need for something to push and stabilize you more laterally, such as toes two through five abducting : )

Dr Ivo Waerlop, one of The Gait Guys

#halluxvarus #strangelookingfeet #hallux #thegaitguys #sandalgapdeformity





Barp EA, Temple EW, Hall JL, Smith HL. Treatment of Hallux Varus After Traumatic Adductor Hallucis Tendon Rupture. J Foot Ankle Surg. 2018 Mar - Apr;57(2):418-420.

https://radiopedia.org/articles/sandal-gap-deformity?lang=us

Munir U, Morgan S. Hallux Varus. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019 Jan-.
2019 May 6.

Ryan PM, Johnston A, Gun BK. Post-traumatic dynamic hallux varus instability. J Clin Orthop Trauma. 2014 Jun;5(2):94-8. doi: 10.1016/j.jcot.2014.05.005. Epub 2014 Jun 15.

Sixth toe disease...That growth on the outside of your foot… Or on somebody’s foot is coming to see you…

IMG_6704.JPG

You know what we’re talking about. That extra growth on the lateral aspect of the foot that happens way too often and many of your clients. A Taylor’s bunion or sometimes referred to as a “bunionette”. 

What is the usual fix?

Usually in a ski boot or hiking boot, they blow out the lateral side of the shoe. This is usually not a good fix because most of these folks have internal tibial torsion and somewhat of a forefoot supinatus/varus.

IMG_6706.JPG
IMG_6707.JPG

The internal tibial torsion places the knee outside the saggital plane and an arch support without a forefoot valgus post will just push it further out, creating a conflict at the knee. The forefoot supinatus and/or varus places them on the outside of the foot as well. Remember, most of these folks are ALREADY on the outside of the foot and the foot wants to migrate laterally...so creating more space just means it migrates farther. Good thought, doesn’t work that way.

IMG_6710.JPG

So what did we do?

  • We created a valgus post for the forefoot (see picture above) tapering from lateral to medial and to help “push“ the distal aspect of the first ray down (because there was motion available that was not being used)

  • We gave him exercises to help descend the first ray like the extensor hallucis brevis exercise, toe waving as well as peroneus longus exercises

  • We gave him plenty of balance and coordination work

    Dr Ivo Waerlop, one of The Gait Guys




#6thtoe #internaltibialtorsion #forefootvarus # forefootsupinatus #gaitanalysis #thegaitguys







Whaddaya Think of these Shoes?

Would you put YOUR patient/client/own feet in them?

Dr Ivo Waerlop, one of The Gait Guys, discusses a common manufacturers defect to look out for, especially in people with rear foot problems. You have to watch out for manufacturers defects in shoes : )

LEARNING OPPORTUNITY THIS WEDNESDAY NIGHT, MAY 15TH

Biomechanics 308
online.com 5 PST, 6 MST, & CST, 8 EST

#gait #thegaitguys #shoeproblem #manufacturersdefect#footproblem

https://vimeo.com/335772235

Is your (or your athletes) cleat neutral or in varus?

Cleats are often the athletes primary interface with the ground and are responsible for transmitting the forces from the core and appendicular muscles down to the ground. The construction of the cleat as well as its characteristics (such as a forefoot varus cant in the forefoot, like this one here) can make all the difference in the world in athletic performance.

Dr Ivo Waerlop, one of The Gait Guys

#gait #thegaitguys #forefoot #varus #valgus #gaitanalysis #cleatproblems #cleatconstruction

Subtle clues to an LLD?

Leg length discrepancies, whether their functional anatomical, have biomechanical consequences north of the foot. This low back pain patient exhibited 2 signs. Can you tell what they are?

can you see the difference ?

can you see the difference ?

how about now?

how about now?

compare right to left

compare right to left

compare right to left

compare right to left

can you see the difference in the Q angles?

can you see the difference in the Q angles?

Look at the first picture and noticed how the left knee is hyper extended compared to the right. Sometimes we see flexion of this extremity. This is to "functionally shorten" that extremity.

Now look at the Q angles. Can you see how the left QL angle is greater than the right? This usually results from a long-term leg length discrepancy where the body is attempting to compensate by increasing the valgus angle of that knee, effectively shortening the extremity.

Dr Ivo Waerlop, one of The Gait Guys

#subtle #clues #LLD #leglengthdiscrepancy #leglengthinequality #thegaitguys #gaitabnormality

What does a pedograph of a person with hallux limitus look like?

IMG_5779.jpg
IMG_5780.jpg

Take a good look at the pedographs above. Can you figure out which side has the hallux limitus from the pictures? 

You would think that with hallux limitus there would be increased printing over the distal phalanx of great toe and possibly over the distal metatarsal as seen in the print of the right foot. This would make sense as if you have limited motion here and the pressure will be more forward. However, often times Hallux limitus is painful and the patient develops a compensation to NOT load the joint, as we see on the print of the left foot. We see the lack of printing under the first metatarsal head and increased printing laterally in the foot from avoidance of that joint. Also notice a slight increased printing in the right heel teardrop (hash marks are more filled in) and slight widening of it anteriorly. He has a right sided leg length discrepancy and we would normally expect an increased amount of pronation on the longer leg side, however because of the weight shift to the left we are seeing increased pronation on the right. Now, with this valgus moment of the right foot do you understand why the printing is so heavy under the first metatarsal and distal phalanx. Note also the increased printing at the distal phalanx of toes number two, three and five on the right hand side in an attempt to stabilize as his center of gravity shifts to the right.

And now you know!

Dr Ivo, one of The Gait Guys

#halluxlimitis, #gaitanalysis, #pedograph, #leglengthdiscrepancy, #LLD

Shoe causing knee pain? You decide… 

IMG_5522.jpg
IMG_5526.jpg
IMG_5525.jpg

This gentleman presented with left-sided knee pain at the medial collateral ligament. His left foot was planted when he rotated to the left. Take a close look at the shoes in the picture. If you look closely, you will notice the right shoe is tilted on its axis due to a rear foot to forefoot deformity (forefoot supinatus)and the left shoe upper was assembled canted on its axis, Most likely in manufacturing defect. Can you see the subtle valgus in the left shoe rearfoot?

Think of the implications of a shoe with this orientation. Putting the rearfoot in valgus “prepronates“ the foot, causing medial rotation of the tibia and femur and increase valgus stress on the knee, stressing the medial collateral ligament and stabilizing complex. This will most likely manifest itself as anterior rotation of the ilium on the left-hand side with relative posterior rotation on the right and a clockwise Pelvic distortion pattern. With the foot planted on the left side and it being pre-pronated, can you see how the rotation to the left leaves a greater amount of external rotation that must occur to just get the foot to neutral, never mind supination for stability and pushoff?
What about the popliteus having to work on time to assist and extra rotation and the appropriate femoral/tibial rotation ratios to spare the medial meniscus?

These are the kind of things to keep us awake at night…

Forefoot Varus vs Forefoot Supinatus

tumblr_nry1ywvvjb1qhko2so1_250.jpg

We talked about forefoot varus, forefoot supinatus and subsequent biomechanics in a recent onlinece.com course. Here is a great commentary on a review article we discussed as well as a great explanation about thew tru differences between at forefoot varus (rare) and the more common forefoot supinatus.

Take home message? FROM THE ARTICLE:

" In summary: both look the same, but they are totally different beasts:

    a forefoot varus is bony and a forefoot supinatus is soft tissue
    a forefoot varus is a cause of ‘overpronation’ and a forefoot supinatus is the result of ‘overpronation’
    a forefoot varus is rare and a forefoot supintus is common
    a forefoot varus cannot be corrected and a forefoot supinatus can be corrected"

http://www.runresearchjunkie.com/the-effect-of-forefoot-varus-on-the-hip-and-knee-and-the-effect-of-the-hip-and-knee-on-forefoot-supinatus/

Club Foot, anyone?

Screen Shot 2017-11-27 at 9.47.14 AM.png

This gent came in to see us for a new orthotic prescription. As you can imagine, or are probably aware, these cases present a challange becuase of both the anatomy and pathomechanics, especially the plantar flexed foot and loss of ankle rocker.

Screen Shot 2017-11-27 at 9.47.38 AM.png
Screen Shot 2017-11-27 at 9.47.48 AM.png

This gent had his left foot is 20 degrees plantar flexion. He has bi-lateral rigid forefoot valgus, bi-lat. femoral retrotorsion and bi-lat. internal tibial torsion.  

We built him an othotic with a modified UCB (deep heel cup) with 20 degrees of plantar flexion (ie ramp delta or "drop") into the left orthotic as well as bilateral forefoot valgus posts.

If you would like to read up on clubfoot (or talipes equino varus, as it is called) , here is a nice, full text review.


Anand A, Sala DA. Clubfoot: Etiology and treatment. Indian Journal of Orthopaedics. 2008;42(1):22-28. doi:10.4103/0019-5413.38576.

link to free full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759597/

What do we have here and what type of shoe would be appropriate?

You are looking at a person with a fore foot varus. This means that the fore foot (ie, plane of the metatarsal heads) is inverted with respect to the rear foot (ie, the calcaneus withe the subtalar joint in neutral). Functionally translated, this means that they will have difficulties stabilizing the medial tripod (1st MET head) to the ground making the forefoot and arch unstable and likely rendering the rate and degree of pronation increased.

The incidence of this condition is 8% of 116 female subjects (McPoil et al, 1988) and 86% of 120 male and female subjects (Garbalosa et al, 1994), so it seems to happen happen more in males. We think this second number is inflated and those folks actually had a forefoot supinatus, which is much more common.

Fore foot varus occurs in 3 flavors:

  • compensated
  • uncompensated
  • partially compensated

What is meant by compensated, is that the individual is able to get the head of the 1st ray to the ground completely (compensated), partially, or, when not at all, uncompensated.What this means from a gait perspective ( for partially and uncompensated conditions) is that the person will pronate through the fore foot to get the head of the 1st ray down and make the medial tripod of the foot (ie, they pronate through the subtalar joint to allow the 1st metatarsal to contact the ground). This causes the time from mid-stance to terminal stance to lengthen and will inhibit resupination of the foot. 

Today we are looking at a rigid, uncompensated forefoot varus, most likely from insufficient talar head derotation during fetal development and subsequent post natal development. They will not get to an effective foot tripod. They will collapse the whole foot medially. These people look like severely flat-footed hyperpronators.


So, what do you do and what type of shoe is appropriate? Here’s what we did:

  • try and get the 1st ray to descend as much as possible with exercises for the extensor hallucis brevis and short flexors of the toes (see our videos on youtube)
  • create more motion in the foot with manipulation, massage mobilization to optimize what is available
  • strengthen the intrinsic muscles of the feet (particularly the interossei)
  • increase strength of the gluteus maximus and posterior fibers of the gluteus medius to slow internal rotation of the leg during initial contact to midstance
  • put them in a flexible shoe for the 1st part of the day, to exercise the feet and a more supportive; medially posted (ideally fore foot posted) shoe for the latter part of the day as the foot fatigues
  • monitor his progress at 3-6 month intervals
  • a rigid orthotic will likely not help this client and they will find it terribly uncomfortable because this is a RIGID deformity for the most part (the foot will not accommodate well to a corrective orthotic. Besides, the correction really has to be made at the forefoot anyways. 

Lost? Having trouble with all these terms and nomenclature? Take our national shoe fit program, available by clicking here.

The Gait Guys. Uber foot geeks. Separating the wheat from the chaff, with each and every post.

The Q angle and Kids: The Basics

Screen Shot 2017-05-01 at 3.37.08 PM.png

Genu valgum in kids: What you need to know

We have all seen this. The kid with the awful “knock knees”.  It is a Latin word “which means “bent” or “knock kneed”. It appears to have 1st been used in 1884.

This condition, where the Q angle angle exceeds 15 degrees, usually presents maximally at age 3 and should resolve by age 9. It is usually physiologic in development due to obliquity of the femur, when the medial condyle is lower than the lateral. Normal development and weight bearing lead to an overgrowth of the medial condyle of the femur. This, combined with varying development of the medial and lateral epiphysies of the tibial plateau leads to the valgus development. Gradually, with increased weight bearing, the lateral femoral condyle (and thus the tibial epiphysis) bear more weight and this appears to slow, and eventually reverse the valgum.

Normal knee angulation usually progresses from 10-15 degrees varus at birth to a maximal valgus angle of 10-15 degreesat 3-3.5 years (see picture).  The valgus usually decreases to an adult angle of 5-7 degrees.  Remember that in women, the Q angle should be less than 22 degrees with the knee in extension and in men, less than 18 degrees. It is measured by measuring the angle between the line drawn from the ASIS to the center of the patella and one from the center of the patella through the tibial tuberosty, while the leg is extended.

Further evaluation of a child is probably indicated if:

  • The angle is greater than 2 standard deviations for their age (see chart) 
  • If their height is > 25th percentile 
  • If it is increasing in severity 
  • If it is developing asymmetrically

Management is by serial measurement of the intermalleolar distance (the distance between ankles when the child’s knee are placed together) to document gradual spontaneous resolution (hopefully). If physiologic genu valgum persists beyond 7-8 years of age, an orthopaedic referral would be indicated but certainly intervention with attempts at corrective exercises and gait therapy should be employed. Persistence in the adult can cause a myriad of gait, foot, patello femoral and hip disorders, and that is the topic on another post.

Promotion of good foot biomechanics through the use of minimally supportive shoes, encouraging walking on sand (time to take that trip to the beach!), walking on uneven surfaces (like rocks, dirt and gravel), gentle massage (to promote muscle facilitation for those muscles which test weak (origin/insertion work) and circulation), gait therapeutic exercises and acupuncture when indicated, can all be helpful.

Metatarsus Adductus: The Basics

Metatarsus Adductus: The Basics

A few points to remember:

  • Metatarsus adductus deformity is a forefoot which is adducted in the transverse plane with the apex of the deformity at LisFranc’s (tarso-metatarsal) joint. The fifth metatarsal base will be prominent and the lateral border of the foot which is convex in shape . The medial foot border is concave with a deep vertical skin crease located at the first metatarso cuneiform joint level. The hallux (great toe) may be widely separated from the second digit and the lesser digits will usually be adducted at their bases (se below). ln some cases the abductor hallucis tendon may be palpably taut just proximal to its insertion into the inferomedial aspect of the proximal phalanx (1)
  • To measure the deviation of the metatarsals, the midline of the foot correspondingto bisecting the heel is used as a reference. This is the line that divides the heel pad into equal parts and, when extended, runs through the second toe or the second web space. In mild deformities, the midline of the foot runs through the third toe. In moderate adductus deformities, it falls between the third and fourth toes. In severe deformities the line is lateral to the third web space.(2)
  • If detected early, stretching is a common and effective treatment for mild and some moderate cases. The heel is steadied with one hand while the forefoot is abducted in relation to the hind foot. This is done for 5 reps, 5-7 times per day. (2)
  • 85% will resolve spontaneously, is caused by intrauterine position, is flexible & resolves spontaneously in more than 90 % of children. (3)
  • Though often used interchangeably, the term "metatarsus adductus" is usually reserved for milder cases, where the forefoot is adducted on the hindfoot at the tarso-metatarsal articulation. Metatarsus varus is often reserved for conditions where the matatrsals are actually curved AND the forefoot is adducted on the hindfoot. (4) The term "Metatarsus primus varus" is reserved for feet which have the same neutral or valgus hindfoot and varus forefoot but, in addition, increased divergence of the first and second metatarsals. (5)
  • It is interesting to note that along with forefoot adductus, hip dysplasia and internal tibial torsion are common (6) and this patient has the latter
  • Gait abnormalities seen with this deformity include a decreased progression angle, in toed gait, excessive supination of the feet with low gear push off from the lesser metatarsals. 

 

1.  Bleck E: Metatarsus adductus: classification and relationship to outcomes of treatment. J Pediatric Orthop 3:2-9,1983.

2. Bohne W. Metatarsus adductus. Bulletin of the New York Academy of Medicine. 1987;63(9):835-838.  link to FREE full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1629274/

3. http://www.wheelessonline.com/ortho/metatarsus_adductus

4. Peabody, C.W. and Muro, F.: Congenital metatarsus varus. J. Bone Joint Surg. 15:171-89, 1933.

5. Truslow, W.: Metatarsus primus varus or hallux valgus? J. Bone Joint Surg.23:98-108, 1925.

6. Jacobs J: Metatarsus varus and hip dysplasia. C/inO rth o p 16:203-212, 1960


additional references:

Kane R. Metatarsus varus. Bulletin of the New York Academy of Medicine. 1987;63(9):828-834. link to FREE full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1629282/

Wynne-Davies R, Littlejohn A, Gormley J. Aetiology and interrelationship of some common skeletal deformities. (Talipes equinovarus and calcaneovalgus, metatarsus varus, congenital dislocation of the hip, and infantile idiopathic scoliosis). Journal of Medical Genetics. 1982;19(5):321-328. link to FREE full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1048914/

 

The Knee and Macerating Menisci

Take a good look at the above 2 slides.

Notice that, during pronation, there is a medial rotation of the lower leg and thigh. We remember that, during pronation, the talus plantar flexes, adducts, and everts. This anterior translation and medial rotation of the talus causes the tibia and subsequently the femur to follow. This, if everything is working right, results in medial rotation of the knee.

From the slides, it should also be evident that the medial condyle of the femur and a medial tibial plateau are larger than the lateral. This allows for an increased amount of internal and external rotation of the knee. We remember that the meniscus, like a washer, is between the tibia and femur. We if you think about this kinematically, it would make sense that the tibia, during pronation (which occurs from initial contact to mid stance) would have to rotate faster than the femur otherwise the meniscus would be caught "in between". If there is a mismatch in timing, the meniscus is "caught in the middle", which causes undue stress and can cause fraying, degeneration, etc.

Likewise, during supination (from mid stance to pre swing) the femur must externally rotate faster then the tibia, otherwise we see this same "mismatch". This is a scenario we commonly see in folks who over pronate at the mid foot and remain in pronation for too omg a period of time. 

We think of pronation as being initiated from the movement described above by the talus, and it is attenuated by the popliteus muscle as well as some of the deep flexors of the foot, which fire mostly during stance phase. You will notice that the popliteus  is eccentrically contracting at this point.

Supination, initiated by swing phase of the opposite leg and momentum, is assisted by concentric contraction of the popliteus muscle, internal rotation of the pelvis on the stance phase leg, contraction of the vastus medialis, deep flexors of the foot and peroneii.

Taking moment to "wrap your head around" this concept. Now you can see how complicated it can be when we started to throw in femoral and tibial torsions as well as possibly some orthotic therapy. For example, in an individual with internal tibial torsion, if you do not valgus post the forefoot of the orthotic, the knee is placed at outside the sagittal plane in external rotation further by the orthotic and this thwarts the function of his mechanism, leaving the meniscus holding the bag. 

Know your anatomy and know what is supposed to be firing when, your patients and clients knees depend on it!

 

Can you spot the problem?

Take a look at the pictures before proceeding, knowing that this gal presented with L sided outside knee pain and see if you can tell what may be wrong. She does wear orthotics. 

Take a good look at the lateral flare on each of these shoes. Yes, it is a Brooks Pure series with a 4mm drop. Yes the shoe has a medial (sl larger) and lateral flare, posteriorly and anteriorly.

Do you see the discoloration and increased wear on the lateral heel counter on the left compared to the left? There is also increased wear of the lugs on the outside of this left shoe. The forefoot is also worn into slight varus, but this difficult to see. The shoe, especially in combination with her orthotic, is keeping her in varus (ie inverted) for too long, taking her knee outside the saggital plane and contributing to her knee pain. 

ROTATE YOUR SHOES!

tumblr_nx0af1nwit1qhko2so1_1280.jpg
tumblr_nx0af1nwit1qhko2so2_1280.jpg

Look at your patients and clients shoes!

Can you see the varus cant to the heel counter of these shoes? This is an Asics  Gel  Kayano; a shoe we seem to see manufacturers defects in frequently. This could be a good thing for an overpronator, but could be a bad thing for a supinator. With a drop ( ramp delta) of 13 mm, and a narrow toe box, we are not huge fans…