Abdominal Activity and Gait We came across this cool study today, after a well educated patient asked about abdominal activity during gait. Here is the bottom line: low level activity in the rectus abdominis and external oblique throughout the gait cycle, more concentrated activity of the internal oblique at initial contact/loading response (heel strike). This makes sense, since the external oblique occupies more real estate and has a larger cross sectional area; it most likely has a role in stabilization both in rotational like emoticon planes as well as the saggital plane (Z). Perhaps the action of the internal oblique at initial contact is to assist in external rotation of the pelvis on the stance phase leg, as the the opposite leg goes into swing? “Cluster analysis identified two patterns of activity for the internal oblique, external oblique and rectus abdominis muscles. In the lumbar erector spinae, three patterns of activity were observed. In most instances, the patterns observed for each muscle differed in the magnitude of the activation levels. In rectus abdominis and external oblique muscles, the majority of subjects had low levels of activity (<5.0% of a maximum voluntary contraction) that were relatively constant throughout the stride cycle. In the internal oblique and the erector spinae muscles, more distinct bursts of activity were observed, most often close to foot-strike. The different algorithms used for the cluster analysis yielded similar results and a discriminant function analysis provided further evidence to support the patterns observed” Clin Biomech (Bristol, Avon). 2002 Mar;17(3):177-84. Abdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activity. White SG1, McNair PJ.

Abdominal Activity and Gait

We came across this cool study today, after a well educated patient asked about abdominal activity during gait.

Here is the bottom line:
low level activity in the rectus abdominis and external oblique throughout the gait cycle, more concentrated activity of the internal oblique at initial contact/loading response (heel strike).

This makes sense, since the external oblique occupies more real estate and has a larger cross sectional area; it most likely has a role in stabilization both in rotational like emoticon planes as well as the saggital plane (Z). Perhaps the action of the internal oblique at initial contact is to assist in external rotation of the pelvis on the stance phase leg, as the the opposite leg goes into swing?

“Cluster analysis identified two patterns of activity for the internal oblique, external oblique and rectus abdominis muscles. In the lumbar erector spinae, three patterns of activity were observed. In most instances, the patterns observed for each muscle differed in the magnitude of the activation levels. In rectus abdominis and external oblique muscles, the majority of subjects had low levels of activity (<5.0% of a maximum voluntary contraction) that were relatively constant throughout the stride cycle. In the internal oblique and the erector spinae muscles, more distinct bursts of activity were observed, most often close to foot-strike. The different algorithms used for the cluster analysis yielded similar results and a discriminant function analysis provided further evidence to support the patterns observed”

Clin Biomech (Bristol, Avon). 2002 Mar;17(3):177-84.
Abdominal and erector spinae muscle activity during gait: the use of cluster analysis to identify patterns of activity.
White SG1, McNair PJ.