3 clues that someone has internal tibial torsion

Watch this video a few times through and see what you notice. There are three clues that this patient has internal tibial torsion, can you find them?

He presented with right sided knee pain, medial aspect of the patella and medial joint line as well as tenderness over the medial joint line and pes anserine. Lower extremity musculature test strong and 5/5 save for his semi tendinosis on the right which tested 4/5.He has diminished endurance bilaterally in the external obliques

1. Note how his knees, right greater than left, fall outside the sagittal plane

2. Note the decreased progression angle of both feet during forward motion

3. Note how he toes off in supination, right greater than left.

This patient’s knee pain is coming from irritation of the pes anserine, particularly semitendinosus and his inability to recruit his abdominals sufficiently so, instead of the usual pattern of recruiting iliopsoas or rectus femoris, he chooses his sartorius, gracious and semi tendinosis.

Pay attention to how the new tracks, the progression angle as well as if they tow off in pronation, neutral, or supination in that can offer subtle clues to internal tibial torsion.

Dr Ivo Waerlop, one of The Gait Guys

#internaltibialtorsion #gaitanalysis #thegaitguys


What a difference a few months makes

Take a look at the pre-and post videos of this gal with a forefoot supinatus and impaired motor control of her feet and core. Shuffle walks, foot intrinsic exercises, core work and gait retraining can go a long way! The important thing to remember here is that the patient was very motivated and did what was required to make things happen. A testament to tenacity and dedication

Dr Ivo Waerlop, one of The Gait Guys

#beforeandafter #gaitretraining #gaitanalysis #forefootsupinatus

The Fudge Factor

image credit: https://commons.wikimedia.org/wiki/File:Pieces_of_fudge_cut_from_a_slab,_April_2008_cropped.jpg

image credit: https://commons.wikimedia.org/wiki/File:Pieces_of_fudge_cut_from_a_slab,_April_2008_cropped.jpg

We know from experience that it is often easier to accomplish a task faster, rather than slower (like an exercise or skiing) because of the cortex “interpolating” or making its “best guess” as to what (based on past experience) is going to happen and in what order. There is a certain amount of guess work (or what we call “the fudge factor”) involved.

Walking at a slower speed (or performing an exercise at a slower speed for that matter) has increased muscular demands, than doing it more quickly. Here is one study that exemplifies that.

“These findings may reflect a relatively higher than expected demand for peroneus longus and tibialis posterior to assist with medio-lateral foot stability at very slow speeds”

Here, they thought muscular demands would be proportional to speed, increasing with increasing demands. Like many things, what we think is going to happen and what actually happens can be 2 different things : )

Dr Ivo Waerlop, one of The Gait Guys

#fudgefactor #corticalinterpolation #muscledemands #gait #gaitguys

Gait Posture. 2014 Apr;39(4):1080-5. doi: 10.1016/j.gaitpost.2014.01.018. Epub 2014 Feb 6.

Electromyographic patterns of tibialis posterior and related muscles when walking at different speeds.

Murley GS1, Menz HB2, Landorf KB2.

The Short Foot Exercise

Here it is, in all its glory...Our version of the short foot exercise. Love it or hate it, say it “doesn’t translate”, we find it a useful training tool for both the patient/client as well as the clinician. It awakens and creates awareness of the sometimes dormant muscles in the user and offers a window to monitor progression for them, as well as the observer.

Remember that the foot intrinsics are supposed to be active from midstance through terminal stance/pre swing. Having the person “walk with their toes up” to avoid overusing the long flexors is a cue that works well for us. This can be a useful adjunct to your other exercises on the road to better foot intrinsic function.

Dr Ivo Waerlop, one of The Gait Guys

Sulowska I, Mika A, Oleksy Ł, Stolarczyk A. The Influence of Plantar Short Foot Muscle Exercises on the Lower Extremity Muscle Strength and Power in Proximal Segments of the Kinematic Chain in Long-Distance Runners Biomed Res Int. 2019 Jan 2;2019:6947273. doi: 10.1155/2019/6947273. eCollection 2019

Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. Effect of electromyographic biofeedback on learning the short foot exercise. J Back Musculoskelet Rehabil. 2019 Jan 4. doi: 10.3233/BMR-181155. [Epub ahead of print]

McKeon PO, Hertel J, Bramble D, et al. the foot core system: a new paradigm for understanding intrinsic foot muscle function Br J Sports Med March 2014 doi:10.1136/bjsports-2013- 092690

Dugan S, Bhat K: Biomechanics and Analysis of Running Gait Phys Med Rehabil Clin N Am 16 (2005) 603–621

Bahram J: Evaluation and Retraining of the Intrinsic Foot Muscles for Pain Syndromes Related to Abnormal Control of Pronation http://www.aptei.ca/wp-content/uploads/Intrinsic-Muscles-of-the-Foot-Retraining-Jan-29-05.pdf

#shortfootexercise #footexercises #footrehab #thegaitguys #gaitanalysis #gaitrehab #toesupwalking


Ode to the Popliteus

Remember the popliteus? To recap, it contracts at the initial contact phase of the walking gait cycle, to act as an accessory PCL (look HERE


to read about that), then contracts eccentrically to slow the rate of internal rotation of the femur on the tibia until midstance, so as not to macerate the meniscus; It then contracts concentrically to accelerate the external rotation of the femur on the tibial plateau so it rotates faster then the tibia, to protect the meniscus as well. So, internal rotation of the femorotibial complex from initial contact to midstance and external rotation of the complex from midstance to preswing. Got it?

Now look at the video of this gal with L sided medial knee pain and past history of a left tibial plateau fracture in her youth. Do you see it? Hmmmm; doesn’t look like internal rotation does it? Don’t see it? Remember that the whole complex SHOULD be internally rotating until the swing phase leg passes the stance pase leg. See it now? Considering that the popliteus tested weak on the clinical exam, does this surprise you?

Agreed that there are many factors initiating internal rotation (and thus pronation) of the stance phase leg from initial contact to midstance, like plantar flexion, adduction and eversion of the talus, contraction of the lower leg anterior compartment muscles, eccentric contraction of the quads and hamstrings, just to name a few, can you see how (a least theoretically) one bad player can ruin the team?

Yes, popliteus rehab, along with abdominal core and foot core endurance exercises are in her future.

Dr Ivo Waerlop, one of The Gait Guys

#popliteus #kneepain #kneeproblem #thegaitguys #gaitanalysis

Tricks of the trade: Backward walking

image credit: https://pixabay.com/vectors/slide-sliding-falling-stickman-151861/

image credit: https://pixabay.com/vectors/slide-sliding-falling-stickman-151861/

A single event can generate asynchronous sensory cues due to variable encoding, transmission, and processing delays. Robert Peterka talks about this, along with posture compensation and system apportionment when it comes to balance and coordination of the visual, vestibular and proprioceptive systems. We have talked about that here on the blog in the past.

We are often looking for ways to “highlight” pathology and make it more visible in the clinical exam. Having your patient/client walk backwards is one of those tools.

Walking and remaining upright in the gravitational plane requires 3 integrated systems to work in concert with one another: the visual, vestibular and proprioceptive systems. Backwards walking requires a more coordinated effort AND IF there is a “hiccup” or extra demand on the system (the proprioceptive in this case), neurological processing can take a little longer, efforts can be delayed and the end result is a greater compensation is needed; this often makes pathology more evident.

Try having your client walk backwards when you are doing your exam and see what we mean. We think you will be surprised with the results : )

Dr Ivo Waerlop, one of The Gait Guys

Peterka RJStatler KDWrisley DMHorak FB. Postural compensation for unilateral vestibular loss. Front Neurol. 2011 Sep 6;2:57. doi: 10.3389/fneur.2011.00057. eCollection 2011.

temporal Shayman CSSeo JHOh YLewis RFPeterka RJHullar TE.Relationship between vestibular sensitivity and multisensory temporal integration. J Neurophysiol. 2018 Oct 1;120(4):1572-1577. doi: 10.1152/jn.00379.2018. Epub 2018 Jul 18.

Hawkins KABalasubramanian CKVistamehr AConroy CRose DKClark DJFox EJ. Assessment of backward walking unmasks mobility impairments in post-stroke community ambulators. Top Stroke Rehabil. 2019 May 12:1-7. doi: 10.1080/10749357.2019.1609182. [Epub ahead of print]

#backwardwalking #clinicalexam #thegaitguys #gaitpathology #clinicaltricksofthetrade

On the subject of manual muscle work…

image credit: https://commons.wikimedia.org/wiki/File:Muscle_spindle_model.jpg

image credit: https://commons.wikimedia.org/wiki/File:Muscle_spindle_model.jpg

Here is an older article that may seem verbose, but has interesting implications for practitioners who do manual muscle work with their clients. We would invite you to work your way through the entire article, a little at a time, to fully grasp it’s implications.

Plowing through the neurophysiology, here is a synopsis for you:

Tactile and muscle afferent (or sensory) information travels into the dorsal (or posterior) part of the spinal cord called the “dorsal horn”. This “dorsal horn” is divided into 4 layers; 2 superficial and 2 deep. The superficial layers get their info from the A delta and C fibers (cold, warm, light touch and pain) and the deeper layers get their info from the A alpha and A beta fibers (ie: joint, skin and muscle mechanoreceptors).

So what you may say

The superficial layers are involved with pain and tissue damage modulation, both at the spinal cord level and from descending inhibition from the brain. The deeper layers are involved with apprising the central nervous system about information relating directly to movement (of the skin, joints and muscles).

Information in this deeper layer is much more specific that that entering the more superficial layers. This happens because of 3 reasons:

  1. there are more one to one connections of neurons (30% as opposed to 10%) with the information distributed to many pathways in the CNS, instead of just a dedicated few in the more superficial layers

  2. the connections in the deeper layers are largely unidirectional and 69% are inhibitory connections (ie they modulate output, rather than input)

  3. the connections in the deeper layers use both GABA and Glycine as neurotransmitters (Glycine is a more specific neurotransmitter).

Ok, this is getting long and complex, tell me something useful...

This supports that much of what we do when we do manual therapy on a patient or client is we stimulate inhibitory neurons or interneurons which can either (directly or indirectly)

  • inhibit a muscle

  • excite a muscle because we inhibited the inhibitory neuron or interneuron acting on it (you see, 2 negatives can be positive)

So, much of what we do is inhibit muscle function, even though the muscle may be testing stronger. Are we inhibiting the antagonist and thus strengthening the agonist? Are we removing the inhibition of the agonist by inhibiting the inhibitory action on it? Whichever it may be, keep in mind we are probably modulating inhibition, rather than creating excitation.

Semantics? Maybe…But we constantly talk about being specific for a fix, not just cover up the compensation. Is it easier to keep filling up the tire (facilitating) or patching the hole (inhibiting). It’s your call

Yan Lu Synaptic Wiring in the Deep Dorsal Horn. Focus on Local Circuit Connections Between Hamster Laminae III and IV Dorsal Horn Neurons J Neurophys Volume 99 Issue 3

March 2008 Pages 1051-1052 link: http://jn.physiology.org/content/99/3/1051

Music to my ears. Movement to my steps...



"The applicable contribution of these novel findings is that music tempo could serve as an unprompted means to impact running cadence. As increases in step rate may prove beneficial in the prevention and treatment of common running-related injuries, this finding could be especially relevant for treatment purposes, such as exercise prescription and gait retraining."

Van Dyck E, Moens B, Buhmann J, Demey M, Coorevits E, Dalla Bella S, Leman M. Spontaneous Entrainment of Running Cadence to Music Tempo. Sports Med Open. 2015;1(1):15. Epub 2015 Jul 14.

link to free full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526248/

image credit: http://pressplay.pbworks.com/w/page/82954552/Loebner%20Keith%20HW%203

Perhaps we need to change how we are are rehabbing X (insert your favorite weight bearing joint)

image credit: https://en.wikipedia.org/wiki/StrongBoard_balance

image credit: https://en.wikipedia.org/wiki/StrongBoard_balance

We have recently run across some research that has changed the way we look at some of the rehab we do, especially proprioceptive rehab. Perhaps it will do the same for you.

Traditionally, we present increasing balance requirements to the weight bearing structure by changing one or more of the three parameters that keep us upright in the gravitational plane: vision, the proprioceptive system (which include the muscles, joints and ligaments) and the vestibular system (the utricle, saccule and semicircular canals). We have discussed them extensively in multiple articles here on the blog. We generally would make the rehab task more difficult by removing a stimulus (closing your eyes, having someone stand on foam) or challenging (standing on one leg, putting someone on a wobble board, BOSU, extending the head, etc) the to make it more durable and "educated". More difficult task + better balance = more stable joint and better outcomes. 

The importaat thing is to think about how much of each system is apportioned; we often (wrongly) assume it is pretty equally divided between the three. It turns out, that it really depends on the surface you are standing on and the circumstances.

On flat planar surfaces, the division of labor looks something like this:

  • proprioceptive system 70%
  • vestibular system 20%
  • visual system 10 %

On uneven or unstable surfaces (like a BOSU, dynadisc, foam, Swiss ball, etc), it looks like this:

  • vestibular system 70%
  • visual system 20%
  • proprioceptive system 10%

So, if we are rehabbing an ankle, it would make the most sense to do most of the rehab (and additional challenges) on a flat planar surface, perhaps incorporating things like forward, backward and side lean, toe and heel work and closed chain strengthening. WE could also close the eyes to make them more dependent on the proprio system, or extend the head 60 degrees to dampen the influence the lateral semicircular canals. We can put them on a BOSU or unstable surface but we need to remember that in that case, we will be rehabbing the vestibular system AND PERHAPS teaching THAT SYSTEM to compensate more, than the "broken" system. Yes, they get better BUT we are not fixing the system that is injured. 

You could make the argument, that your athletes/clients run/walk/exercise on uneven surfaces and use their vestibular system more.Maybe so, but is the actual injury to the vestibular system or to the musculoskeletal one?

Armed with this information, try and think of the system that is compromised and focus your efforts on that system, rather than the other two. Yes, people have vestibular dysfunction and refractive errors and need therapy, exercises and/or corrective lenses, but many of us are not vestibular or opticokinetic therapists (kudos to those of you who are!)




Peterka RJ, Statler KD, Wrisley DM, Horak FB. Postural Compensation for Unilateral Vestibular Loss. Frontiers in Neurology. 2011;2:57. doi:10.3389/fneur.2011.00057.

Horak FB. Postural Compensation for Vestibular Loss. Restorative neurology and neuroscience. 2010;28(1):57-68. doi:10.3233/RNN-2010-0515.

Better gait AFTER rhizotomies?

Nothing surprised me more than reading this paper and finding out that folks that have had rhizotomies, which removes the afferent input from the dorsal horn and sensory information from the reflex loops in the cord, actually had better gait. Of course these children had severe spastic diplegia, which means they have lost descending inhibition from higher center's and most likely had increased flexor tone in the lower extremities. 

image credit: http://realtyconnect.me/spinal-cord-cross-section-tracts/background-information-musculoskeletal-key-within-spinal-cord-cross-section-tracts/

image credit: http://realtyconnect.me/spinal-cord-cross-section-tracts/background-information-musculoskeletal-key-within-spinal-cord-cross-section-tracts/

Remember that the fibers entering the dorsal horn not only go to the dorsal columns but also to the spinocerebellar pathways. When someone has spasticity, the feedback loops are skewed and flexor drive coming from the rostral reticular formation generally is increased are often kept in check by the cerebellar and vestibular feedback loops. Perhaps the interruption of this feedback loop and lack of information from type IA and II afferents of the muscle spindles as well as Ib afferents from the globe tendon organs modulated the tone sufficiently to improve gait. This study did a selective dorsal rhizotomy which means only a portion of it was ablated. 

The somatotopic organization  of the dorsal horn of the spinal cord (i.e.: certain areas of the dorsal horn correspond to certain body parts) is well documented in humans; It would make sense that the dorsal root itself (i.e.: the afferent fibers in the nerve going into the dorsal horn) would be as well, as they are that way in murines (2) and felines (3). 

So, how does this apply to gait? People with strokes, cortical lesions, diseases like cerebral palsy and even possibly increased flexor tone, may benefit from altered input into the dorsal horn. It would have been really cool to see if they increased extensor activity in this individuals, if they would be benefited further. 



OBJECTIVE: To identify factors associated with long-term improvement in gait in children after selective dorsal rhizotomy (SDR).

DESIGN: Retrospective cohort study SETTING: University medical center PARTICIPANTS: 36 children (age 4-13y) with spastic diplegia (gross motor classification system level I (n=14), II (n=15) and III (n=7) were included retrospectively from the database of our hospital. Children underwent selective dorsal rhizotomy (SDR) between January 1999 and May 2011. Patients were included if they received clinical gait analysis before and five years post-SDR, age >4 years at time of SDR and if brain MRI-scan was available.

INTERVENTION: Selective dorsal rhizotomy MAIN OUTCOME MEASURES: Overall gait quality was assessed with Edinburgh visual gait score (EVGS), before and five years after SDR. In addition, knee and ankle angles at initial contact and midstance were evaluated. To identify predictors for gait improvement, several factors were evaluated including: functional mobility level (GMFCS), presence of white matter abnormalities on brain-MRI, and selective motor control during gait (synergy analysis).

RESULTS: Overall gait quality improved after SDR, with a large variation between patients. Multiple linear regression analysis revealed that worse score on EVGS and better GMFCS were independently related to gait improvement. Gait improved more in children with GMFCS I & II compared to III. No differences were observed between children with or without white matter abnormalities on brain MRI. Selective motor control during gait was predictive for improvement of knee angle at initial contact and midstance, but not for EVGS.

CONCLUSION: Functional mobility level and baseline gait quality are both important factors to predict gait outcomes after SDR. If candidates are well selected, SDR can be a successful intervention to improve gait both in children with brain MRI abnormalities as well as other causes of spastic diplegia.


1. Oudenhoven LM, van der Krogt MM, Romei M, van Schie PEM, van de Pol LA, van Ouwerkerk WJR, Harlaar Prof J, Buizer AI. Factors associated with long-term improvement of gait after selective dorsal rhizotomy. Arch Phys Med Rehabil. 2018 Jul 4. pii: S0003-9993(18)30442-8. doi: 10.1016/j.apmr.2018.06.016. [Epub ahead of print]

2. Wessels WJ1, Marani E. A rostrocaudal somatotopic organization in the brachial dorsal root ganglia of neonatal rats. Clin Neurol Neurosurg. 1993;95 Suppl:S3-11.

3. Koerber HRBrown PB. Somatotopic organization of hindlimb cutaneous nerve projections to cat dorsal horn. J Neurophysiol. 1982 Aug;48(2):481-9.

This simple screening test becomes a form of exercise.

Today we look at a simple CNS screen for your “central pattern generators” or “CPG’s”. If you do not pass, then the exercise becomes the rehab exercise. If you (or your client) does not have good coordination between the upper and lower extremity, then they will not be that efficient, physiologically or metabolically. 

The “cross crawl” or “step test” looks at upper and lower extremity coordination, rather than muscular strength. If performed for a few minutes, it becomes a test that can look at endurance as well. 

It is based on the “crossed extensor” response, we looked at last week. That is, when one lower limb flexes, the other extends; the contralateral upper limb also flexes and the ipsilateral upper limb extends. It mimics the way things should move when walking or running. 

  • Stand (or have your client stand) in a place where you will not run into anything.
  • Begin marching in place.
  • Observe for a few seconds. When you (or your client) are flexing the right thigh, the left arm should flex as well; then the left thigh and right arm. Are your (their) arms moving? Are they coordinated with the lower extremity?
  • What happens after a few minutes? Is motion good at 1st and then breaks down?
  • Now speed up. What happens? Is the movement smooth and coordinated? Choppy? Discoordinated?
  • now slow back down and try it with your (their) eyes closed

If  movement is smooth and coordinated, you (they) pass

If movement is choppy or discoordinated, there can be many causes, from simple (muscle not firing, injury) to complex (physical or physiological lesion in the CNS).

  • If movement is not smooth and coordinated, try doing the exercise for a few minutes a day. You can even start sitting down, if you (they) cannot perform it standing. If it improves, great; you were able to help “reprogram” the system. If not, then you (they) should seek out a qualified individual for some assistance and to get to the root of the problem.

Arm swing and instability. To train or not to train... Should we do it?

We have long talked about arm swing and whether to change it, encourage it or just observe it. It appears to be an indicator of potential instability as well as a portent for more dire neurological problems (Alzheimers, Parkinson's)

This study looks at altered arm swing in kids with CP; how it is an indicator that there is a problem and how it can profoundly effect their gait and stability. Cerebral palsy may be an extreme case, but how does it differ REALLY (other than severity) from someone who has a mild neurological impairment, such as movement patterning disorders, that we see each and every day in our friends, family, clients and patients? Try and think out of the box and investigate the implications.

"Observational research suggests that in children with cerebral palsy, the altered arm swing is linked to instability during walking. Therefore, the current study investigates whether children with cerebral palsy use their arms more than typically developing children, to enhance gait stability. Evidence also suggests an influence of walking speed on gait stability. Moreover, previous research highlighted a link between walking speed and arm swing. Hence, the experiment aimed to explore differences between typically developing children and children with cerebral palsy taking into account the combined influence of restricting arm swing and increasing walking speed on gait stability. Spatiotemporal gait characteristics, trunk movement parameters and margins of stability were obtained using three dimensional gait analysis to assess gait stability of 26 children with cerebral palsy and 24 typically developing children. Four walking conditions were evaluated: (i) free arm swing and preferred walking speed; (ii) restricted arm swing and preferred walking speed; (iii) free arm swing and high walking speed; and (iv) restricted arm swing and high walking speed. Double support time and trunk acceleration variability increased more when arm swing was restricted in children with bilateral cerebral palsy compared to typically developing children and children with unilateral cerebral palsy. Trunk sway velocity increased more when walking speed was increased in children with unilateral cerebral palsy compared to children with bilateral cerebral palsy and typically developing children and in children with bilateral cerebral palsy compared to typically developing children. Trunk sway velocity increased more when both arm swing was restricted and walking speed was increased in children with bilateral cerebral palsy compared to typically developing children. It is proposed that facilitating arm swing during gait rehabilitation can improve gait stability and decrease trunk movements in children with cerebral palsy. The current results thereby partly support the suggestion that facilitating arm swing in specific situations possibly enhances safety and reduces the risk of falling in children with cerebral palsy."

Front Hum Neurosci. 2016 Jul 15;10:354. doi: 10.3389/fnhum.2016.00354. eCollection 2016.
Restricted Arm Swing Affects Gait Stability and Increased Walking Speed Alters Trunk Movements in Children with Cerebral Palsy.
Delabastita T, Desloovere K, Meyns P.

link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4945643/

The Beef on the EDL.....

We have long been promoting appropriate function of the long extensors of the toes  here, in our practices, our lectures, on Youtube, in our book......You get the idea. Lets take a closer look at this often weakened and overlooked muscle.

We remember that the EDL lies mostly in the superior and somewhat lateral part of the anterior compartment of the lower leg, comprising approximately the upper 2/3 from under the lateral tibial plateau and fibula, and from the interosseus membrane. It lies under the tibialis anterior, and the extensor hallucis longus lies below it. Its tendons pass inferiorly and travel under the extensor retinaculum and attaches to the base of the distal phalanges of toes 2-4. These muscles act from initial contact to loading response to help eccentrically lower the foot to the ground and ensure smooth heel rocker and most likely attenuate the speed of initial pronation as the talus glides anteriorly on the calcaneal facets and again from terminal stance through initial swing to provide compression of the metatarsal phalangeal and interphalangeal joints, to offset the long flexors (which are often overactive) and create clearance for the toes during swing.  


What does it look like when the long extensors don’t work so well? Have a look at the pedograph on the right (pair J howard r). what do we see? First we notice the lack of printing under the head of the 1st metatarsal and increased printing of the second metatrsal head. Looks like this individual has a forefoot supinatus, or possibly a forefoot varus (cannot get the head of the 1st metatarsal to the ground, and thus a weak medial tripod, possibly insufficient extensor hallucis brevis, peroneus longus, flexor digitorum brevis, or all of the above). Next we see increased printing of the distal phalanges of digits 2-4. Looks like the long flexors are dominant, which means the long extensors are inhibited. What about the lack of printing of the 5th toe? I thought the flexors were overactive? They are, but due to the supinatus, the foot is tipped to the inside and the 5th barely contacts the ground!

How do you fix this?

  • Help make a better foot tripod using the toe wave, tripod standing and extensor hallucis brevis exercises.
  • Make sure the articulations are mobile with joint mobilization, manipulation and massage.
  • How about dry needling and acupuncture to improve function?
  • Make sure the knee and hip are functioning appropriately.
  • Put them in footwear that will allow the foot to function better (a less rigid, less ramp delta shoe).
  • As a last resort, if they cannot make an adequate tripod because of lack of motivation, anatomical constraints or both, use a foot leveling orthotic.


Want to be faster?


Take this simple test. 

If you want to be faster, you had better incorporate some proprioceptive training into your plan. It is the 1st part of our mantra: Skill, Endurance, and Strength (in that order). Proprioceptive training appears to be more important that strength or endurance training from an injury rehabilitation perspective injury rehabilitation perspective as well part of an injury prevention program

 What is proprioception? It is body position awareness; ie: knowing what your limbs are doing without having to look at them.

Take this simple test:

  • Stand in a doorway with your shoes off. Keep your arms up at your sides so that you can brace yourself in case you start to fall. Lift your toes slightly so that only your foot tripod remains on the ground (ie the base of the big toe, the base of the little toe and the center of the heel.). Are you able to balance without difficulty? Good, all 3 systems (vision, vestibular and proprioceptive) are go.
  • Now close your eyes, taking away vision from the 3 systems that keep us upright in the gravitational plane. Are you able to balance for 30 seconds? If so, your vestibular and proprioceptive systems are intact.
  • Now open your eyes and look up at the ceiling. Provided you can balance without falling, now close your eyes. Extending your neck 60 degrees just took out the lateral semicircular canals of the vestibular system (see here for more info). Are you still able to balance for 30 seconds? If so, congrats; your proprioceptive system (the receptors in the joints, ligaments and muscles) is working great. If not, looks like you have some work to do. You can begin with exercises we use every day by clicking here.

Proprioception should be the 1st part of any training and/or rehabilitation program. If you don’t have a good framework to hang the rest of your training on, then you are asking for trouble. 



Timothy E. Hewett, PhD, , Kevin R. Ford, MS, Gregory D. Myer, MS, CSCS Anterior Cruciate Ligament Injuries in Female Athletes: Part 2, A Meta-analysis of Neuromuscular Interventions Aimed at Injury Prevention The American Journal of Sports Medicine Vol 34, Issue 3, pp. 490 - 498   link to free full text: http://journals.sagepub.com/doi/abs/10.1177/0363546505282619

Lephart SM1, Pincivero DM, Giraldo JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997 Jan-Feb;25(1):130-7.


Which foot exercises activate the intrinsics?

So, your goal is to strengthen the intrinsics. What exercise is best? Probably the most specific one, right? Well....maybe. These 4 exercises seem to all hit them.

This study looked at the muscle activation of the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, flexor digiti minimi, adductor hallucis oblique, flexor hallucis brevis, and interossei and lumbricals with the short foot, toe spreading, big toe extension and lesser toes extension exercises with T2 weighted MRI post exercises (perhaps not the best way to look at it) and shows they all work to varying degrees.

"All muscles showed increased activation after all exercises. The mean percentage increase in activation ranged from 16.7% to 34.9% for the short-foot exercise, 17.3% to 35.2% for toes spread out, 13.1% to 18.1% for first-toe extension, and 8.9% to 22.5% for second- to fifth-toes extension."

Gooding TM, Feger MA, Hart JM, Hertel J. Intrinsic Foot Muscle Activation During Specific Exercises: A T2 Time Magnetic Resonance Imaging Study. Journal of Athletic Training. 2016;51(8):644-650. doi:10.4085/1062-6050-51.10.07.

link to full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094843/

Achilles Tendinitis?

You should read this study if you haven't already

We all treat different forms of achilles tendinitis and tendonosis. This landmark study uses loaded eccentrics and showed better tendon organization and decreased tendon thickness at follow up. 

Tendons do seem to respond better to tension and loaded eccentrics certainly seems to do the job. Though, this study is 2004 and much new research has leaned us all more toward looking at pain free isometrics , in other words, taking that tension in a pain free single range load and helping the tendon to reestablish appropriate stiffness. Tension and time under pain free load is the key, then expanding from that into more dynamic load challenges like eccentrics. But, as always, it is finding the load your client can pain free tolerate, get the organism to reload the tissue without threat and then build durability and tissue tolerance to load.

"Conclusions: Ultrasonographic follow up of patients with mid-portion painful chronic Achilles tendinosis treated with eccentric calf muscle training showed a localised decrease in tendon thickness and a normalised tendon structure in most patients. Remaining structural tendon abnormalities seemed to be associated with residual pain in the tendon."

Ohberg L, Lorentzon R, Alfredson H, Maffulli N. Eccentric training in patients with chronic Achilles tendinosis: normalised tendon structure and decreased thickness at follow up. British Journal of Sports Medicine. 2004;38(1):8-11. doi:10.1136/bjsm.2001.000284.

link to abstract: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724744/

The Power of Triangles


We talk about triangles a lot. Think about triangles. Hey Pythaogoras did! They are powerful distributors of force. Here we will talk about 3 of them.

There are 4 layers of muscles in the foot. The 1st triangle occurs in the 1st layer. Think of the abductor hallucis and the abductor digiti minimi. Proximally they both attach to the calcaneus and distally to the 1st and 5th proximal phalanges. Now think about the transverse metatarsal ligament that runs between the disal metatarsal heads. Wow, a triangle! this one is superficial.

Now think about the adductor hallicus. It has a transverse and oblique head. think about that transverse metatarsal ligament again. Wow, another triangle!

What about the flexor hallicus brevis and flexor digiti minimi? The former originates from the cuboid, lateral cunieform andd portion of the tib posterior tendon; the latter from the proximal 5th metatarsal. They both go forward and insert into the respective proximal phalynx (with the sesamoids intervening in the case of the FHB). and what connects these? The deep transverse metatarsal ligament of course! And this triangle surrounds the adductor triangle, with both occurring the 3rd layer of the 4 layers of foot muscles.

Triangles… and you thought geometry was boring!

Remaining triangular when we need to (because of our pointy heads)…

Distracted Kids Walk Slower


Do Gait rehab on Kids?

Distracted kids walk slower and spend more time in double leg stance.

We know it can effect adults, usually resulting a mild decomposition of gait, by decreasing step length in many and slowing of gait in older folks (becoming more primitive).

Watch where you do your gait rehab in the younger set; keep them focused and engaged for better outcomes.

"Significant main effects of walking experience groupand visual distraction condition were found. Visual environmental distraction significantly affected gait performance in children regardless of walking experience. Velocity decreased from 110.04 to 97.73 cm/sec (p = 0.003) while double limb stance % of gait cycle increased from 18.29% to 20.39% (p = 0.025)."

Phys Occup Ther Pediatr. 2017 Apr 10:1-10. doi: 10.1080/01942638.2017.1297987. [Epub ahead of print]
The Effect of Visual Environmental Distraction on Gait Performance in Children.
Bizama F, Medley A, Trudelle-Jackson E, Csiza L.

J Neuroeng Rehabil. 2014 Apr 28;11:74. doi: 10.1186/1743-0003-11-74.
Effect of explicit visual feedback distortion on human gait.
Kim SJ, Mugisha D.

Curr Gerontol Geriatr Res. 2011;2011:651718. doi: 10.1155/2011/651718. Epub 2011 Jun 16.
Effects of a Visual Distracter Task on the Gait of Elderly versus Young Persons.
Bock O, Beurskens R.

You can only take so many whacks to the head before it starts to show...

In addition to vision and the vestibular system, proprioceptive information is gathered by primarily 2 sources: The peripheral joint mechanoreceptors left (type 1, type 2, type 3, and type 4 ), as well as the muscle mechanoreceptors: Muscle spindles and golgi tendon organs. This information is transmitted to the cortex via the dorsal column and spinocerebellar pathways. The information is then integrated in the parietal lobe (for information in the dorsal columns) and cerebellum. The information is then relayed to the motor cortex, basal ganglia, and vestibular system. The interplay of these 3 systems, vision, the vestibular system, and the joint/muscle mechanoreceptors is what allows us to keep our bodies up right and functioning in the gravitational field. When integration is compromised, at either a peripheral or cortical level, proprioception suffers.

" Measures of cumulative subconcussive head impacts during a men’s lacrosse season are associated with decreases in balance scores from pre- to postseason, according to findings from Sacred Heart University in Fairfield, CT, that could have implications for lower extremity injury risk. The findings suggest that, even in the absence of a concussion, repetitive subconcussive impacts can negatively affect an athlete’s balance, which in turn can increase the risk of lower extremity injury"


Miyashita TL, Diakogeorgiou E, Marrie K. Correlation of head impacts to change in balance error scoring system scores in Division I Men’s lacrosse players. Sports Health 2017 Jan 1. [Epub ahead of print]

Plisky PJ, Rauh MJ, Kaminski TW, Underwood FB. Star Excursion Balance Test as a predictor of lower extremity injury in high school basketball players. J Orthop Sports Phys Ther 2006;36(12):911-919.

Where do you do YOUR gait retraining?

It may seem like we are stating the obvious, but visual contrast seems to matter more than visual acuity. When we look at light contrast in lower frequencies (red ranges), we start to see some decomposition of gait with regards to step length, but not necessarily cadence or speed in this study of over 4,000 folks over 50 (hey, that’s us!). What are your patients wearing on their feet? What color is your floor? How about the walls?

Do your gait retraining in a well lit area with lots of contrast between the floor and your patients shoes, as well as the surroundings.


Duggan E, Donoghue O, Kenny RA, Cronin H, Loughman J, Finucane C. Time to Refocus Assessment of Vision in Older Adults? Contrast Sensitivity but Not Visual Acuity Is Associated With Gait in Older Adults. J Gerontol A Biol Sci Med Sci. 2017 Feb 28. doi: 10.1093/gerona/glx021. [Epub ahead of print]