Neuroma! Triple Threat....

Can you guess why this patient is developing a neuroma on the left foot, between the 3rd and 4th metatarsals?

IMG_6220.jpg
IMG_6218.jpg
IMG_6219.jpg

This gal presented to the office with pain in the left foot, in the area she points to as being between the 3rd and 4th metatarsals. It has been coming on over time and has become much worse this spring with hiking long distances, especially in narrower shoes. It is relieved by rest and made worse with activity.

Note the following:

  • She has an anatomical short leg on the left (tibial)

  • internal tibial torsion on the left

  • left forefoot adductus (see the post link below if you need a refresher)

Lets think about this.

The anatomical short leg on the left is causing this foot to remain in relative supination compared the right and causes her to bear weight laterally on the foot.

The internal tibial torsion has a similar effect, decreasing the progression angle and again causing her to bear weight laterally on the foot, compressing the metatarsals together.

We have discussed forefoot adductus before here on the blog. Again, because of the metararsal varus angle, it alters the forces traveling through the foot, pushing the metatarsals together and irritating the nerve root sheath, causing hypertrophy of the epineurium and the beginnings of a neuroma.

In this patients case, these things are additive, causing what I like to a call the “triple threat”.

So, what do we do?

  • give her shoes/sandals with a wider toe box

  • work on foot mobility, especially in descending the 1st ray on the left

  • work on foot intrinsic strength, particularly the long extensors

  • treat the area of inflammation with acupuncture

Dr Ivo Waerlop, one of The Gait Guys

#forefootadductus #metatarsusadductus #neuroma #gaitanalysis #thegaitguys #internaltibialtorsion

Things seem to come in 3's...

Things tend to occur in threes. This includes congenital abnormalities. Take a look this gentleman who came in to see us with lower back pain.

Highlights with pictures below:

  • bilateral femoral retrotorsion

  • bilateral internal tibial torsion

  • forefoot (metatarsus) adductus

So why LBP? Our theory is the lack of internal rotation of the lower extremities forces that motion to occur somewhere; the next mobile area just north is the lumbar spine, where there is limited rotation available, usually about 5 degrees.

Dr Ivo Waerlop, one of The Gait Guys.

#tibialtorsion #femoraltorsion #femoralretrotorsion #lowbackpain #thegaitguys #gaitproblem

this is his left hip in full internal rotation. note that he does go past zero.

this is his left hip in full internal rotation. note that he does go past zero.

full internal rotation of the right hip; note he does not go past zero

full internal rotation of the right hip; note he does not go past zero

note the internal tibial torsion. a line dropped from the tibial tuberosity should go through the 2nd metatarsal or between the 2nd and 3rd.

note the internal tibial torsion. a line dropped from the tibial tuberosity should go through the 2nd metatarsal or between the 2nd and 3rd.

ditto for the keft

ditto for the keft

a line bisecting the calcaneus should pass between the 2nd and 3rd metatarsal shafts. If talar tosion was present, the rearfoot would appear more adducted

a line bisecting the calcaneus should pass between the 2nd and 3rd metatarsal shafts. If talar tosion was present, the rearfoot would appear more adducted

less adductus but still present

less adductus but still present

look at that long flexor response in compensation. What can you say about the quadratus plantae? NO bueno…

look at that long flexor response in compensation. What can you say about the quadratus plantae? NO bueno…

Ditto!

Ditto!

1st MTP Pain? The Biomechanics of the Big Toe...

Remember the rockers? We have done a series on this in the past. Remember there are three: heel, ankle and forefoot. We are going to concentrate on the forefoot today.

As a reminder, forefoot rocker occurs at the 1st metatarsal phalangeal joint (big toe knuckle) as the tibia progresses over the forefoot during forward movement. You NEED 50 degrees to do this competently; you SHOULD have 65 degrees. When you don’t, you have a condition called hallux limitus. This could be from a number of reasons, from overpronation in the mid foot, to a bunion, to faulty firing patterns of the muscles which help to descend the 1st ray (the extensor hallucinations brevis, the peroneus longs and the short flexors off the toes). Pretty much, ANYTHING that causes a dorsal and posterior shift of the 1st MTP axis will cause limited forefoot rocker.

So, the question is, “Do you know where 1st 1st MTP pain may be coming from? How familiar are you with the mechanics of that joint?”

Take a few minutes to review it in this video with Dr Ivo Waerlop of The Gait Guys.

#gait, #gaitanalysis, #1stmtp, #forefootrocker, #thegaitguys,

Barefoot vs Shoes...It's about the strike pattern


Footnotes 7 - Black and Red.jpg

“The influence of strike patterns on running is more significant than shoe conditions, which was observed in plantar pressure characteristics. Heel-toe running caused a significant impact force on the heel, but cushioned shoes significantly reduced the maximum loading rate. Meanwhile, although forefoot running can prevent impact, peak plantar pressure was centered at the forefoot for a long period, inducing a potential risk of injury in the metatarsus/phalanx. Plantar pressure on the forefoot with RFS was lesser and push-off force was greater when cushioned shoes were used than when running barefoot.”


takeaways from the study?

  • forefoot strike reduces heel impact

  • rear foot strike reduces forefoot impact

  • forefoot strike increases and prolongs pressures (in shoes) on the forefoot which could potentially cause forefoot problems

  • cushioned shoes do not really change impact force but change (reduce) the rate of loading

  • in a forefoot strike, pressures are shifted more to the mid foot

want to know more? Join us this Wednesday, December 19th on online.com: Biomechanics 303







Sun XYang YWang LZhang XFu W. Do Strike Patterns or Shoe Conditions have a Predominant Influence on Foot Loading? J Hum Kinet. 2018 Oct 15;64:13-23. doi: 10.1515/hukin-2017-0205. eCollection 2018 Sep.

link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231350/





Forefoot Varus vs Forefoot Supinatus

tumblr_nry1ywvvjb1qhko2so1_250.jpg

We talked about forefoot varus, forefoot supinatus and subsequent biomechanics in a recent onlinece.com course. Here is a great commentary on a review article we discussed as well as a great explanation about thew tru differences between at forefoot varus (rare) and the more common forefoot supinatus.

Take home message? FROM THE ARTICLE:

" In summary: both look the same, but they are totally different beasts:

    a forefoot varus is bony and a forefoot supinatus is soft tissue
    a forefoot varus is a cause of ‘overpronation’ and a forefoot supinatus is the result of ‘overpronation’
    a forefoot varus is rare and a forefoot supintus is common
    a forefoot varus cannot be corrected and a forefoot supinatus can be corrected"

http://www.runresearchjunkie.com/the-effect-of-forefoot-varus-on-the-hip-and-knee-and-the-effect-of-the-hip-and-knee-on-forefoot-supinatus/

More Foot Rocker Pathology Clues.

Is ankle rocker normal and adequate or is it limited ?  Is it limited in early midstance or late midstance ? How about at Toe off?  Is it even possible to distinguish this ? Well, we are splitting hairs now but we do think that it is possible. It is important to understand the pathologies on either end of the foot that can impact premature ankle rocker. 

Look at the photo above. You can see the clinical hint in the toe wear that this runner may have a premature heel rise. However, this is not solid evidence that every time you see this you must assume pathologic ankle rocker. The question is obviously, what is the cause.

Considerations:

1- weak anterior compartment, which is quite often paired with the evil neuroprotective tight calf-achilles posterior complex to offer the necessary sagittal protection at the ankle mortise.  This will cause premature heel rise from a posterior foot aspect.

2- rigid acquired blocked ankle rocker from something like “Footballer’s ankle”. This will also cause premature heel rise from a relatively posterior foot aspect.

3- there are multiple reasons for late midstance ankle rocker pathology. The client could completely avoid the normal pronation/supination phase of gait because of pain anywhere in the foot. For example, they could have plantar fascial pain, sesamoiditis, a weak first ray complex from hallux vaglus, they could have a painful bunion, they could be avoiding the collapse of a forefoot varus. There are many reasons but any of them can impair the timely pronation-supination phase in attempting to gain a rigid lever foot to toe off the big toe-medial column in “high gear” fashion. And when this happens the preparatory late midstance phase of gait can be delayed or rushed causing them to move into premature heel rise for any one of several reasons.  Rolling off to the outside and off of the lesser toes creates premature heel rise.  

4- And now for one anterior aspect cause of premature heel rise. This is obviously past the midstance phase but it can also cause premature heel rise. Turf toe, Hallux rigidus/limitus or even the dreaded fake out, the often mysterious Functional Hallux limitus (FnHL) can cause the heel to come up just a little early if the client cannot get to the full big toe dorsiflexion range.  

We could go on and on and include other issues such as altered Hip Extension Patterning, loss of hip extension range of motion, weak glutes, or even loss of terminal knee extension (from things like an incompleted ACL rehab, Osteoarthritis etc) but these are things for another time. Lets stay in the foot today.

All of these causes, with their premature heel rise component, will rush the foot to the forefoot and likely create Metatarsal head plantar loading and could cause forces appropriate enough to create stress responses to the bone. This abrupt forefoot loading thrust will often cause a reactive hammer toe effect.  Quite often just looking at the resting nature of a clients toes while they are lying down will show the underlying increase in neuro-protective hammering pattern (increased long toe flexor and short toe extensor activity paired with shortness of the opposing pairs which we review here in this short video link).  The astute observer will also note the EVA foam compressing of the shoe’s foot bed, and will also note the distal displacement of the MET head fat pad rendering the MET head pressures even greater osseously. 

Premature ankle rocker and heel rise can occur for many reasons. It can occur from problems with the shoe, posterior foot, anterior foot, toe off, ankle mortise, knee, hip or even arm swing pathomechanics.  

When premature heel rise and impaired ankle rocker rushes us to the front of the foot we drive the front half of the shoe into the ground as the foot plantarflexion is imparted into the shoe.  The timing of the normal biomechanical events is off and the pressures are altered.  instead of rolling over the forefoot and front half of the shoe after our body has moved past the foot these forces are occurring more so as our body mass is still over the foot. And the shoe can show us clues as to the torture it has sustained, just like in this photo case.

You must know the normal biomechanical gait events if you are going to put together the clues of each runner’s clinical mystery.  If you do not know normal how will you know abnormal when you see it ? If all you know is what you know, how will you know when you see something you don’t know ?

Shawn and Ivo, The Gait Guys … .  stomping out the world’s pathologic gait mechanics one person at a time. 

What do we have here and what type of shoe would be appropriate?

You are looking at a person with a fore foot varus. This means that the fore foot (ie, plane of the metatarsal heads) is inverted with respect to the rear foot (ie, the calcaneus withe the subtalar joint in neutral). Functionally translated, this means that they will have difficulties stabilizing the medial tripod (1st MET head) to the ground making the forefoot and arch unstable and likely rendering the rate and degree of pronation increased.

The incidence of this condition is 8% of 116 female subjects (McPoil et al, 1988) and 86% of 120 male and female subjects (Garbalosa et al, 1994), so it seems to happen happen more in males. We think this second number is inflated and those folks actually had a forefoot supinatus, which is much more common.

Fore foot varus occurs in 3 flavors:

  • compensated
  • uncompensated
  • partially compensated

What is meant by compensated, is that the individual is able to get the head of the 1st ray to the ground completely (compensated), partially, or, when not at all, uncompensated.What this means from a gait perspective ( for partially and uncompensated conditions) is that the person will pronate through the fore foot to get the head of the 1st ray down and make the medial tripod of the foot (ie, they pronate through the subtalar joint to allow the 1st metatarsal to contact the ground). This causes the time from mid-stance to terminal stance to lengthen and will inhibit resupination of the foot. 

Today we are looking at a rigid, uncompensated forefoot varus, most likely from insufficient talar head derotation during fetal development and subsequent post natal development. They will not get to an effective foot tripod. They will collapse the whole foot medially. These people look like severely flat-footed hyperpronators.


So, what do you do and what type of shoe is appropriate? Here’s what we did:

  • try and get the 1st ray to descend as much as possible with exercises for the extensor hallucis brevis and short flexors of the toes (see our videos on youtube)
  • create more motion in the foot with manipulation, massage mobilization to optimize what is available
  • strengthen the intrinsic muscles of the feet (particularly the interossei)
  • increase strength of the gluteus maximus and posterior fibers of the gluteus medius to slow internal rotation of the leg during initial contact to midstance
  • put them in a flexible shoe for the 1st part of the day, to exercise the feet and a more supportive; medially posted (ideally fore foot posted) shoe for the latter part of the day as the foot fatigues
  • monitor his progress at 3-6 month intervals
  • a rigid orthotic will likely not help this client and they will find it terribly uncomfortable because this is a RIGID deformity for the most part (the foot will not accommodate well to a corrective orthotic. Besides, the correction really has to be made at the forefoot anyways. 

Lost? Having trouble with all these terms and nomenclature? Take our national shoe fit program, available by clicking here.

The Gait Guys. Uber foot geeks. Separating the wheat from the chaff, with each and every post.

So you prescribe and fit orthotics you say ?

"It all matters, and quite possibly, if you do not know it all, you cannot help your client."

How about this then, you have someone with a rearfoot valgus with internal tibial torsion.  How are they going to load now? What if you throw in a valgus knee and femoral torsion variant?  Are they going to pronate more or less ? What if that person had just internal tibial torsion on one leg and not the other, yet they had 2 rearfoot valgus feet presentations.  Now what?

Ouch, that is a strong statement. It likely needs softened, but, there is some truth within those words. 

Last night we did our monthly lecture on www.onlineCE.com.  We had a packed room, biggest audience to date.  It is likely because people are realizing that the small stuff matters.  We talked for an hour on foot types and  how they present, how they potentially load, and how other mechanical issues above can impact how a foot type loads. 

We have all seen the pedographs like in the photo. The unwise depend on a static pedograph mapping for diagnostic help and God forbid that is all you use for making orthotics (that may only help if your client is  a professional stander), the more wise use the dynamic pedograph mapping to see how their client moves across the ground, and the wise use it as a mere piece of the data, combine it with a clinical exam, look far up into the biomechanical chain for other locomotive challenges that could change the dynamic loading pattern across the foot and ground.  What do we mean exactly ?  Well, a client with a rearfoot valgus foot type will load the heel and rest of the foot one way if they are doing a good job stacking the hip over the knee, and knee over the foot. But, if they have weakness in the hip affording a frontal plane drift of the pelvis over the foot, that is going to magnify the rearfoot valgus loading pattern (addendum: they could also tip into rearfoot varus posturing as well). That is just one example, of many.  In otherwords, it is the same foot type, but both of these are going to show a dynamic change in the loading pattern response. So, said another way, you cannot diagnose a foot type by the pedograph mapping. Nor should one make an orthotic for someone based off of a pedograph mapping, nor without an examination of the entire kinetic change.  What is your client able, and unable, to do? That is a big question, and when you start by asking those 2 questions, you get closer to the prize.  The pedograph only shows the static or dynamic pressures from the superincumbent load, it does not tell you if it is good or bad, and it does not tell you what they are doing, or why they are loading that way. It only shows the loading. Your job is to find out why they are loading that way, and then determine if that is part of their problem they have sought you out for.

So, does  your head spin now ? Does this suddenly make you sweat ? Do you realize you are missing pieces of the pie in helping your client?  Not yet maybe ?  How about this then, you have someone with a rearfoot valgus with internal tibial torsion. How are they going to load now? What if you throw in a valgus knee and femoral torsion variant? Are they going to pronate more or less ? What if that person had just internal tibial torsion on one leg and not the other, yet they had two rearfoot valgus feet presentations. Now what? Suddenly the loading is different in both feet and up the chains. There is likely going to be different challenges to limb spin control from side to side. This aberrant and asymmetrical loading is going to come up to a pelvis, upon which a single spinal column is trying to find a sound base of support and mobility to work and transfer loads from. 

And, what if this client also has some tibial varum on that same side ? What if they had external tibial torsion or some femoral torsional presentation on one side ?  You can see now how complicated this gets. And that is just on the structural components. What about the dynamic components ?  We here at The Gait Guys feel that this is all critical stuff to take into consideration and it is sometimes the stuff that is the tipping point between a successful management of a clients complaints, and unsuccessful.  

In closing, think about this. If you are sending out your orthotics for fabrication, have you conveyed this all to your fabricator ?  All they know is what a pedograph might show, and what the foot mold looks like. You have to provide them with all this other information, because essentially they are blind (this of course assumes your fabricator can mind juggle all the torsions, valgus/varus, pelvis drift loads etc,  oy vey ! That is hard to do !) This is why we do all of our modifications in office, in the rare case we need a temporary orthotic modification. But, we will aim to just correct what mechanics are aberrant and avoid the whole orthotic crutch when we are able. But lets face it, sometimes, for a period of time, we all need a crutch to get through a problem, to find better mechanics where we can strengthen from or gain protecting from temporarily.  That is what splints do, taping, crutches, braces, one might even argue what corrective exercises do. It is a path on the journey for your client, and sometimes they need help through the muddy parts.

And, don't be "that guy" that says orthotics are useless. They are a crutch , a tool. A small tool, one might argue that it should only be pulled out when the other tools are not working to get the job done.  Do not make them your first line of defense, except when that is called for.  After all, not all people were blessed with sufficient anatomical  and mechanical parts to avoid needing a crutch, so don't be "that guy" that preaches from that extreme, because it is not honest. Or, maybe, you just do not see the biomechanical messes we see in our clinics, that is quite the realistic possibility. 

Want to learn more about this kind of stuff? Keep up with our blog here. OR take some of our lecture recorded classes on www.onlineCE.com . We have a library of classes there for you to take anytime. And meet us once a month over there, every 3rd Wednesday. And, stay tuned for some new teaching gigs we have coming your way.

-Shawn and Ivo,  the gait guys

 

 

Podcast 123: The Rear foot: Understanding your RearFoot type

Key tag words:
foot types, rearfoot, forefoot, pronation, supination, shoe fit, forefoot varus, forefoot supinatus, rearfoot inversion, ankle rocker, injuries, rehab, corrective exercises

Rearfoot varus and Rearfoot valgus. Knowing the anatomy of your rear foot and its anatomic and functional posturing can lead to many problems in anyone. If you do not know the rearfoot type and posturing, you will not understand the rest of the foot mechanics. Without this knowledge, you will not know the reason for midfoot or forefoot problems, not understand what shoe you are in, or even why the shoe, footbed, orthotic you have chosen is either not fixing your problems, or causing them.  Join us on a journey down the rearfoot rabbit hole over the next hour.  Plus a few funny stories to lighten the biomechanics-heavy dialogue.
 

Show links:
http://traffic.libsyn.com/thegaitguys/pod_123final_cut.mp3

http://thegaitguys.libsyn.com/podcast-123-the-rear-foot-understanding-your-rearfoot-type

Show sponsors:
www.newbalancechicago.com

www.thegaitguys.com
That is our website, and it is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).
 
Our podcast is on iTunes, Soundcloud, and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.
 
Show Notes:

https://www.ncbi.nlm.nih.gov/pubmed/27134364

https://www.ncbi.nlm.nih.gov/pubmed/25364132

RearFoot positions:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3588658/

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3990938/

Powers CM, Maffucci R, Hampton S. Rearfoot posture in subjects with patellofemoral pain. J Orthop Sports Phys Ther. 1995 Oct;22(4):155-60.

Power V, Clifford AM. The Effects of Rearfoot Position on Lower Limb Kinematics during Bilateral Squatting in Asymptomatic Individuals with a Pronated Foot Type. J Hum Kinet. 2012 Mar;31:5-15. doi: 10.2478/v10078-012-0001-0. Epub 2012 Apr 3.

Shultz SP, Song J, Kraszewski AP, Hafer JF, Rao S, Backus , Mootanah R, Hillstrom HJ. An Investigation of Structure, Flexibility and Function Variables that Discriminate Asymptomatic Foot Types. J Appl Biomech. 2016 Dec 19:1-25. [Epub ahead of print]

 

You better keep that Hallux Dorsiflexion

Geee....Looks like forefoot rocker really IS IMPORTANT, eh?

...and what have we been saying about being able to dorsiflex your big toe? Watch how well you or your client can descend the 1st ray (remember that if the head of the 1st does not go down and anchor, its axis of rotation moves dorsally and posterior, limiting dorsiflexion of the joint)

This article should make you look at the "toe break" in a shoe...

"They found that increasing bending stiffness assisted with propulsion during running, reducing the metabolic cost of running by about 1%. However, at a certain level, the increased elasticity began to interfere with the natural flexion of the first MTP joint, reducing the contribution of ankle joint torque to push-off and counteracting the metabolic benefits. Within the study population, the threshold of bending stiffness for optimal energetics varied significantly from one runner to the next, suggesting running shoe design may need to be tuned to an individual runner’s needs." 

http://lermagazine.com/news/in-the-moment-sports-medicine/stiffer-shoes-improve-running-energetics-as-long-as-first-mtp-flexion-is-preserved

tumblr_o8tlm8zPXq1qhko2so1_1280.jpg
tumblr_o8tlm8zPXq1qhko2so2_1280.jpg
tumblr_o8tlm8zPXq1qhko2so3_1280.jpg
tumblr_o8tlm8zPXq1qhko2so4_r1_1280.jpg

Wow!  Can you figure out why this person at the distal end of her first metatarsal under her medial sesamoid.

She recently underwent surgery for a broken fibula (distal with plate fixation) and microfracrure of the medial malleolus. You are looking at her full range of dorsiflexion which is improved from approximately 20° plantarflexion. She is now at just under 5°.

She has just begun weight-bearing and developed pain over the medial sesamoid.

The three rockers, depicted above from Thomas Michauds book, or necessary for normal gait.  This patient clearly has a loss of ankle rocker. Because of this loss her foot will cantilever forward and put pressure on the head of the first metatarsal.  This is resulting in excessive forefoot rocker.  Her other option would have been to pronate through the midfoot. Hers is relatively rigid so, as Dr. Allen likes to say, the “buck was passed to the next joint. ”

There needs to be harmony in the foot in that includes each rocker working independently and with in its normal range. Ankle rocker should be at least 10° with 15° been preferable and for footlocker at least 50° with 65 been preferable.

 If you need to know more about rockers, click here.

tumblr_o80wf8tU9u1qhko2so1_400.jpg
tumblr_o80wf8tU9u1qhko2so2_1280.jpg

Do you know where your rocker is?

At 1st pass, some articles may seem like a sleeper, but there can be some great clinical pearls to be had. I recently ran across one of these. It was a presentation from the  42nd annual American Academy of Orthotists and Prosthetists meeting in Orlando, March 2016 entitled “ Shifting Position of Shoe Heel Rocker Affects Ankle Mechanics During Gait”. The title caught my eye.

They looked at ankle kinematics while keeping the toe portion of rocker constant at 63% of foot length, angled at 25 degrees and shifting the base of a rockered shoe from 1cm behind the medial malleolus, directly under it and 1cm anterior to it. Knee and hip kinematics did not differ significantly, however ankle range of motion did.

The more forward the ankle rocker, the less plantarflexion but more ankle dorsiflexion at midstance. So, the question begs, why do we care? Lets explore that further…

  • Think about the “average” heel rocker in a shoe. It largely has to do with the length of the heel and heel flare (base) of the shoe. The further back this is (ie; the more “flare”) the more plantar flexion at heel strike and less ankle dorsiflexion (and thus ankle rocker, as described HERE) you will see. Since loss of ankle dorsiflexion (ie: rocker) usually means a loss of hip extension (since these 2 things should be relatively equal during gait (see here), and that combination can be responsible for a whole host of problems that we talk about here on the blog all the time. Picking a shoe with a heel rocker based further forward (having less of a flare) would stand to promote more ankle dorsiflexion.
  • Having a shoe with a greater amount of “drop” from heel to toe (ie: ramp delta) is going to have the same effect. It will move the calcaneus forward with respect to the heel of the shoe and effectively move the rocker posteriorly.
  • Lastly, look a the shape of the outsole of the shoe. The toe drop is usually clear to see, but does it have a heel rocker (see the picture above)?

These are  a few examples of what to look for in a clients shoe when examining theirs or making a recommendation, depending on whether you are trying to improve or decrease ankle rocker. We can’t think of why you would want to decrease ankle rocker, but with conditions like rigid hallux limitus, where the person has limited or no dorsiflexion of the great toe, you may want to employ a rockered sole shoe. We would recommend one with the rocker set more forward.

tumblr_o5bqzkYA0a1qhko2so1_1280.jpg
tumblr_o5bqzkYA0a1qhko2so2_1280.jpg
tumblr_o5bqzkYA0a1qhko2so3_1280.jpg
tumblr_o5bqzkYA0a1qhko2so4_1280.jpg
tumblr_o5bqzkYA0a1qhko2so5_1280.jpg
tumblr_o5bqzkYA0a1qhko2so6_1280.jpg
tumblr_o5bqzkYA0a1qhko2so7_1280.jpg
tumblr_o5bqzkYA0a1qhko2so8_1280.jpg
tumblr_o5bqzkYA0a1qhko2so9_r1_1280.jpg

 Every foot has a story. 

 This is not your typical “in this person has internal tibial torsion, yada yada yada” post.  This post poses a question and the question is “Why does this gentleman have a forefoot adductus?”

The first two pictures show me fully internally rotating the patients left leg. You will note that he does not go past zero degrees and he has femoral retroversion. He also has bilateral internal tibial torsion, which is visible in most of the pictures. The next two pictures show me fully internally rotating his right leg, with limited motion, as well and internal tibial torsion, which is worse on this ® side

 The large middle picture shows him rest. Note the bilateral external rotation of the legs. This is most likely to create some internal rotation, because thatis a position of comfort for him (ie he is creating some “relief” and internal rotation, by externally rotating the lower extremity)

 The next three pictures show his anatomically short left leg. Yes there is a large tibial and small femoral component. 

 The final picture (from above) shows his forefoot adductus. Note that how, if you were to bisect the calcaneus and draw a line coming forward, the toes fall medial to a line that would normally be between the second and third metatarsal’s. This is more evident on the right side.  Note the separation of the big toe from the others, right side greater than left. 

Metatarsus adductus deformity is a forefoot which is adducted in the transverse plane with the apex of the deformity at LisFranc’s (tarso-metatarsal) joint. The fifth metatarsal base will be prominent and the lateral border of the foot convex in shape . The medial foot border is concave with a deep vertical skin crease located at the first metatarso cuneiform joint level. The hallux (great toe) may be widely separated from the second digit and the lesser digits will usually be adducted at their bases. ln some cases the abductor hallucis tendon may be palpably taut just proximal to its insertion into the inferomedial aspect of the proximal phalanx (1)

Gait abnormalities seen with this deformity include a decreased progression angle, in toed gait, excessive supination of the feet with low gear push off from the lesser metatarsals. 

 It is interesting to note that along with forefoot adductus, hip dysplasia and internal tibial torsion are common (2) and this patient has some degree of both. 

 His forefoot adductus is developmental and due to the lack of range of motion and lack of internal rotation of the lower extremities, due to the femoral retrotorsion and internal tibial torsion.  If he didn’t adduct the foot he would have to change weight-bearing over his stance phase extremity to propel himself forward. Try internally rotating your foot and standing on one leg and then externally rotating. See what I mean? With the internal rotation it moves your center of gravity over your hip without nearly as much lateral displacement as would be necessary as with external rotation. Try it again with external rotation of the foot; do you see how you are more likely displace the hip further to that side OR lean to that side rather than shift your hip? So, his adductus is out of necessity.

Interesting case! When you have a person with internal torsion and limited hip internal rotation, with an adducted foot, think of forefoot adductus!


1.  Bleck E: Metatarsus adductus: classification and relationship to outcomes of treatment. J Pediatric Orthop 3:2-9,1983.

2. Jacobs J: Metatarsus varus and hip dysplasia. C/inO rth o p 16:203-212, 1960

Forefoot valgus: A fixed structural defect in which the plantar aspect of the forefoot is everted on the frontal plane relative to the plantar aspect of the rearfoot; the calcaneum is vertical, the mid tarsal joints are locked and fully pronated  Want to know more? Join us Wednesday evening: 5 PST, 6 MST, 7 CST, 8 EST for Biomechanics 309: Focus on the forefoot on  onlinece.com.   McGraw-Hill Concise Dictionary of Modern Medicine. © 2002 by The McGraw-Hill Companies, Inc.

Forefoot valgus: A fixed structural defect in which the plantar aspect of the forefoot is everted on the frontal plane relative to the plantar aspect of the rearfoot; the calcaneum is vertical, the mid tarsal joints are locked and fully pronated

Want to know more? Join us Wednesday evening: 5 PST, 6 MST, 7 CST, 8 EST for Biomechanics 309: Focus on the forefoot on onlinece.com.

McGraw-Hill Concise Dictionary of Modern Medicine. © 2002 by The McGraw-Hill Companies, Inc.

Fore foot types: Differences between forefoot varus and forefoot supinatus.  Certainly this can be a contraversial topic. Perhaps this will help clear up some questions.  Supination of the forefoot that develops with adult acquired flatfoot is defined as forefoot supinatus. This deformity is an acquired soft tissue adaptation in which the forefoot is inverted on the rearfoot. Forefoot supinatus is a reducible deformity. Forefoot supinatus can mimic, and often be mistaken for, a forefoot varus. A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous deformity that induces subtalar joint pronation, whereas forefoot supinatus is acquired and develops because of subtalar joint pronation (1).  A Forefoot Varus induces STJ pronation whereas a Forefoot Supinatus is created because of STJ pronation (2).  As the foot experiences increased subtalar joint (STJ) pronation moments during weightbearing activities (as in forefoot supinatus) , the medial metatarsal rays will be subjected to increased dorsiflexion moments and the lateral metatarsal rays will be subjected to decreased dorsiflexion moments. Over time, this increase in STJ pronation moments will tend to cause a lengthening of the plantar ligaments and medial fibers of the central component of the plantar aponeurosis and a shortening of the dorsal ligaments in the medial longitudinal arch. As a result, the influence of increased STJ pronation moments occurring over time during weightbearing activities will tend to cause the following (3):  1. An increase in inverted forefoot deformity. 2. A decrease in everted forefoot deformity. 3. A change in everted forefoot deformity to either a perpendicular forefoot to rearfoot relationship or to an inverted forefoot deformity.  More on the forefoot tomorrow evening on  onlinece.com:  Biomechanics 309. Join us!  1. Clin Podiatr Med Surg. 2014 Jul;31(3):405-13. doi: 10.1016/j.cpm.2014.03.009. Forefoot supinatus. Evans EL1, Catanzariti AR2.  2.  https://kenva.wordpress.com/…/…/forefoot-varus-or-supinatus/   3.  http://www.podiatry-arena.com/podiatry-forum/showthread.php…

Fore foot types: Differences between forefoot varus and forefoot supinatus.

Certainly this can be a contraversial topic. Perhaps this will help clear up some questions.

Supination of the forefoot that develops with adult acquired flatfoot is defined as forefoot supinatus. This deformity is an acquired soft tissue adaptation in which the forefoot is inverted on the rearfoot. Forefoot supinatus is a reducible deformity. Forefoot supinatus can mimic, and often be mistaken for, a forefoot varus. A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous deformity that induces subtalar joint pronation, whereas forefoot supinatus is acquired and develops because of subtalar joint pronation (1).

A Forefoot Varus induces STJ pronation whereas a Forefoot Supinatus is created because of STJ pronation (2).

As the foot experiences increased subtalar joint (STJ) pronation moments during weightbearing activities (as in forefoot supinatus) , the medial metatarsal rays will be subjected to increased dorsiflexion moments and the lateral metatarsal rays will be subjected to decreased dorsiflexion moments. Over time, this increase in STJ pronation moments will tend to cause a lengthening of the plantar ligaments and medial fibers of the central component of the plantar aponeurosis and a shortening of the dorsal ligaments in the medial longitudinal arch. As a result, the influence of increased STJ pronation moments occurring over time during weightbearing activities will tend to cause the following (3):

1. An increase in inverted forefoot deformity.
2. A decrease in everted forefoot deformity.
3. A change in everted forefoot deformity to either a perpendicular forefoot to rearfoot relationship or to an inverted forefoot deformity.

More on the forefoot tomorrow evening on onlinece.com: Biomechanics 309. Join us!

1. Clin Podiatr Med Surg. 2014 Jul;31(3):405-13. doi: 10.1016/j.cpm.2014.03.009. Forefoot supinatus. Evans EL1, Catanzariti AR2.

2. https://kenva.wordpress.com/…/…/forefoot-varus-or-supinatus/

3. http://www.podiatry-arena.com/podiatry-forum/showthread.php…

Forefoot Varus or Forefoot Supinatus?   Forefoot varus is a fixed, frontal plane deformity where the forefoot is inverted with respect to the rearfoot. Forefoot varus is normal in early childhood, but should not persist past 6 years of age (i.e. when developmental valgus rotation of forefoot on rearfoot is complete, and plantar aspects of fore- and rearfoot become parallel to, and on same plane as, one another (1)  Forefoot supinatus is the supination of the forefoot that develops with adult acquired flatfoot deformity. This is an acquired soft tissue adaptation in which the forefoot is inverted on the rearfoot. Forefoot supinatus is a reducible deformity. Forefoot supinatus can mimic, and often be mistaken for, a forefoot varus. (2)  A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous where a forefoot supinatus is acquired and develops because of subtalar joint pronation.  “Interestingly, only internal rotation of the hip was increased in subjects with FV – no differences were present in hip adduction and knee abduction between subjects with and without FV. The authors nevertheless conclude that FV causes significant changes in mechanics of proximal segments in the lower extremity and speculate that during high-speed weight-bearing tasks such as running, the effects of FV on proximal segments in the kinetic chain might be more pronounced.”  We wonder if the folks in this study had a true forefoot varus, or actually a forefoot supinatus (3).     The Gait Guys   1. Illustrated Dictionary of Podiatry and Foot Science by Jean Mooney © 2009 Elsevier Limited.  2. Evans EL1, Catanzariti AR2. Forefoot supinatus.  Clin Podiatr Med Surg. 2014 Jul;31(3):405-13. doi: 10.1016/j.cpm.2014.03.009.  3. Scattone Silva R1, Maciel CD2, Serrão FV3. The effects of forefoot varus on hip and knee kinematics during single-leg squat. Man Ther. 2015 Feb;20(1):79-83. doi: 10.1016/j.math.2014.07.001. Epub 2014 Jul 12.

Forefoot Varus or Forefoot Supinatus?

Forefoot varus is a fixed, frontal plane deformity where the forefoot is inverted with respect to the rearfoot. Forefoot varus is normal in early childhood, but should not persist past 6 years of age (i.e. when developmental valgus rotation of forefoot on rearfoot is complete, and plantar aspects of fore- and rearfoot become parallel to, and on same plane as, one another (1)

Forefoot supinatus is the supination of the forefoot that develops with adult acquired flatfoot deformity. This is an acquired soft tissue adaptation in which the forefoot is inverted on the rearfoot. Forefoot supinatus is a reducible deformity. Forefoot supinatus can mimic, and often be mistaken for, a forefoot varus. (2)

A forefoot varus differs from forefoot supinatus in that a forefoot varus is a congenital osseous where a forefoot supinatus is acquired and develops because of subtalar joint pronation.

“Interestingly, only internal rotation of the hip was increased in subjects with FV – no differences were present in hip adduction and knee abduction between subjects with and without FV. The authors nevertheless conclude that FV causes significant changes in mechanics of proximal segments in the lower extremity and speculate that during high-speed weight-bearing tasks such as running, the effects of FV on proximal segments in the kinetic chain might be more pronounced.”

We wonder if the folks in this study had a true forefoot varus, or actually a forefoot supinatus (3).


The Gait Guys


1. Illustrated Dictionary of Podiatry and Foot Science by Jean Mooney © 2009 Elsevier Limited.

2. Evans EL1, Catanzariti AR2. Forefoot supinatus.
Clin Podiatr Med Surg. 2014 Jul;31(3):405-13. doi: 10.1016/j.cpm.2014.03.009.

3. Scattone Silva R1, Maciel CD2, Serrão FV3. The effects of forefoot varus on hip and knee kinematics during single-leg squat. Man Ther. 2015 Feb;20(1):79-83. doi: 10.1016/j.math.2014.07.001. Epub 2014 Jul 12.

Forefoot Varus Anyone?   Forefoot varus appears to move the center of gravity medially while walking. Nothing earthshaking here, but nice to see the support of the literature.  “The most medial CoP of the row and CoP% detected increased medial CoP deviation in FV ≥ 8°, and may be applied to other clinical conditions where rearfoot angle and CoP of the array after initial heel contact cannot detect significant differences.”  We will be talking about foot types this week on  onlinece.com ; Wednesday 8 EST, 7 CST, 6MST, 5 PST Biomechanics 314. Hope to see you there!  J Formos Med Assoc. 2015 May 5. pii: S0929-6646(15)00132-1. doi: 10.1016/j.jfma.2015.03.004. [Epub ahead of print] Analysis of medial deviation of center of pressure after initial heel contact in forefoot varus.  picture from:  http://forums.teamestrogen.com/showthread.php?t=46901

Forefoot Varus Anyone?

Forefoot varus appears to move the center of gravity medially while walking. Nothing earthshaking here, but nice to see the support of the literature.

“The most medial CoP of the row and CoP% detected increased medial CoP deviation in FV ≥ 8°, and may be applied to other clinical conditions where rearfoot angle and CoP of the array after initial heel contact cannot detect significant differences.”

We will be talking about foot types this week on onlinece.com; Wednesday 8 EST, 7 CST, 6MST, 5 PST Biomechanics 314. Hope to see you there!

J Formos Med Assoc. 2015 May 5. pii: S0929-6646(15)00132-1. doi: 10.1016/j.jfma.2015.03.004. [Epub ahead of print]
Analysis of medial deviation of center of pressure after initial heel contact in forefoot varus.

picture from: http://forums.teamestrogen.com/showthread.php?t=46901

Attempting to regain a level playing ground for your foot.

“Remember, we were born with both our rearfoot and forefoot designed to engage on the same plane (the flat ground). We were not born with the heel raised higher than the forefoot. And, the foot’s many anatomically congruent joint surfaces, their associated ligaments, the lines of tendon pull and all the large and small joint movements and orchestrations with each other are all predicated on this principle of a rearfoot and forefoot on the same plane. This is how our feet were designed from the start.  This is why I like shoes closer to zero drop, when possible, because I know that we are getting closer to enabling the anatomy as it was designed. This is not always possible, feasible, logical or reasonable depending on the problematic clinical presentation and there is plenty of research to challenge this thinking, yet plenty to support is as well. The question is, can you get back to this point after years of footwear compensating ? Or have your feet just changed too much, new acquired bony and joint changes that have too many miles on the new changes ? Perhaps you have spent your first 20-50 years in shoes with heeled shoes of varying heel-ball offset. Maybe you can get back to flat ground, maybe you cannot, but if you can, how long will it take? Months ? Years ?  It all makes sense to me, but does it make sense for your feet and your body biomechanics after all these years ? Time will tell.” -Dr. Allen

Fundamental foot skills everyone should have, subconsciously. This video shows a skill you must own for good foot mechanics. It needs to be present in standing, walking, squatting, jumping and the like. It is the normal baseline infrastructure that you must have every step, every moment of every day. 

Is your foot arch weak ? Still stuffing orthotics and stability shoes up under that falling infrastructure ? Try rebuilding a simple skill first, one that uses the intrinsic anatomy to  help pull the arch up.  If your foot is still flexible, you can likely re-earn much of the lost skills, such as this one. This is a fundamental first piece of our foot, lower limb and gait restoration program. We start here to be sure this skill is present, then add endurance work on it and then eventually strength and gait progressions. This is where it starts for us gang. 

Shawn and Ivo, the gait guys

tumblr_ms9szmkxQr1qhko2so1_1280.jpg
tumblr_ms9szmkxQr1qhko2so2_1280.jpg
tumblr_ms9szmkxQr1qhko2so3_1280.jpg
tumblr_ms9szmkxQr1qhko2so4_1280.jpg

Forefoot Valgus or Plantarflexed 1st ray?

Hmmm. That IS the question, isn’t it?

We remember that Forefoot valgus is a condition where the forefoot is everted with respect to the rearfoot.
With a plantar flexed 1st ray, the forefoot is actually in varus (ie inverted) and the the 1st ray is dropped (thus, plantar flexed).

If you look at the picture, you will see the entire forefoot is everted, thus we are  looking at a true forefoot valgus. The question here, is “does the 1st ray move into dorsiflexion”? This would be the difference between a flexible (plastic or rigid deformity and is a function of the rigidity of the subtalar and midtarsal joints as well as the flexibility of the 1st ray.
The literature states that forefoot valgus is the most commonly seen frontal plane deformity of the foot (McPoil 1988, Burns, 1977). We have not found this in clinical practice, but rather forefoot varus. This may be due to most folks seeing us have an issue, and more issues seem to be caused by rigid varus deformities, since they cause the knee to collapse inward.
It’s origin can be multifactorial, ranging from a congenital malformation of the calcaneocuboid joint (more on that joint here) with the absence of a calcanean process, which allows a greater degree of eversion (Bojsen-Moller 1979); over rotation of the talar neck (Sglaraato 1971), or association with a pes cavus foot in compensation to an inverted rearfoot and inflexibilty of the subtalar joint (Lutter 1981). Neuromuscular diseases are believed to cause as many as 95% of these deformities (Dwyer 1975).
The question is, what do we do with it?
  • we insure that the foots mechanics are the best they can be through manipulation and mobilization
  • make sure the joints proximal and distal to the foot are functioning properly
  • muscle test and strengthen weak muscles (think about the poor peroneals in these folks!)
  • make sure they are NOT in a motion control shoe; more flexible is better
  • Make sure their shoe has adequate room in the toe box
  • sometimes, we post the insole of the shoe (or orthotic) in valgus, especially with rigid deformities

A little lost? Take our National Shoe Fit Program, available for instant download 24/7/365 by clicking here.

The Gait Guys. Often a valgus slant on a varus reality. Still bald. Still good looking. Improving your gait competency with each post.