Barefoot running is Barefoot running. There is no substitute

umage source: https://commons.wikimedia.org/wiki/File:06patriotsrun5.jpg

umage source: https://commons.wikimedia.org/wiki/File:06patriotsrun5.jpg

There is nothing quite like running barefoot .. literally ..

There are few studies which examined barefoot versus simulated barefoot versus shod running and this is one of them (1). The forefoot strike pattern and shorter stride length (or increased cadence, provided velocity is constant) often associated with barefoot running, as well as simulated barefoot running seems, to decrease vertical impact loading rates, depending upon the angle of the foot on landing and seem desirable for decreasing injury risk (2-4).

Running barefoot has the greatest amount of ankle dorsiflexion, plantar flexion and thus total range of motion with the knee flexion angle being the least when comparing it to shod and stimulated barefoot running. stride length was shorter and cadence increased, as was suspected and has been reported in many other studies. It is surprising that and stimulated barefoot running, the forefoot strike was there however cadence and stride length did not really change.

In short, the runners were able to simulate some elements of barefoot running, but they did not completely mimic it.

Want to know more? Join us this Wednesday on onlinece.com: Biomechanics 303 for a lively discussion of barefoot running and more. 8 EST, 7 CST, 6 MST, 5PST

  1. Leblanc M, Ferkranus H. Lower Extremity Joint Kinematics of Shod, Barefoot, and Simulated Barefoot Treadmill Running. Int J Exerc Sci. 2018;11(1):717-729.

    link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6033505/#b31-ijes-11-1-717

  2. Shih Y, Lin KL, Shiang TY. Is the foot striking pattern more important than barefoot or shod conditions in running? Gait Posture. 2013;88(4):116–120. [PubMed]

  3. Hobara H, Sato T, Sakaguchi M, Nakazawa K. Step frequency and lower extremity loading during running. Int J Sports Med. 2012;2012;33:310–313. [PubMed]

  4. Thompson MA, Lee SS, Seegmiller J, McGowan CP. Kinematic and kinetic comparison of barefoot and shod running in mid/forefoot and rearfoot strike runners. Gait Posture. 2015;41:957–959. [PubMed]

Barefoot vs Shoes...It's about the strike pattern


Footnotes 7 - Black and Red.jpg

“The influence of strike patterns on running is more significant than shoe conditions, which was observed in plantar pressure characteristics. Heel-toe running caused a significant impact force on the heel, but cushioned shoes significantly reduced the maximum loading rate. Meanwhile, although forefoot running can prevent impact, peak plantar pressure was centered at the forefoot for a long period, inducing a potential risk of injury in the metatarsus/phalanx. Plantar pressure on the forefoot with RFS was lesser and push-off force was greater when cushioned shoes were used than when running barefoot.”


takeaways from the study?

  • forefoot strike reduces heel impact

  • rear foot strike reduces forefoot impact

  • forefoot strike increases and prolongs pressures (in shoes) on the forefoot which could potentially cause forefoot problems

  • cushioned shoes do not really change impact force but change (reduce) the rate of loading

  • in a forefoot strike, pressures are shifted more to the mid foot

want to know more? Join us this Wednesday, December 19th on online.com: Biomechanics 303







Sun XYang YWang LZhang XFu W. Do Strike Patterns or Shoe Conditions have a Predominant Influence on Foot Loading? J Hum Kinet. 2018 Oct 15;64:13-23. doi: 10.1515/hukin-2017-0205. eCollection 2018 Sep.

link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6231350/