What a difference a few months makes

Take a look at the pre-and post videos of this gal with a forefoot supinatus and impaired motor control of her feet and core. Shuffle walks, foot intrinsic exercises, core work and gait retraining can go a long way! The important thing to remember here is that the patient was very motivated and did what was required to make things happen. A testament to tenacity and dedication

Dr Ivo Waerlop, one of The Gait Guys

#beforeandafter #gaitretraining #gaitanalysis #forefootsupinatus

The Fudge Factor

image credit: https://commons.wikimedia.org/wiki/File:Pieces_of_fudge_cut_from_a_slab,_April_2008_cropped.jpg

image credit: https://commons.wikimedia.org/wiki/File:Pieces_of_fudge_cut_from_a_slab,_April_2008_cropped.jpg

We know from experience that it is often easier to accomplish a task faster, rather than slower (like an exercise or skiing) because of the cortex “interpolating” or making its “best guess” as to what (based on past experience) is going to happen and in what order. There is a certain amount of guess work (or what we call “the fudge factor”) involved.

Walking at a slower speed (or performing an exercise at a slower speed for that matter) has increased muscular demands, than doing it more quickly. Here is one study that exemplifies that.

“These findings may reflect a relatively higher than expected demand for peroneus longus and tibialis posterior to assist with medio-lateral foot stability at very slow speeds”

Here, they thought muscular demands would be proportional to speed, increasing with increasing demands. Like many things, what we think is going to happen and what actually happens can be 2 different things : )


Dr Ivo Waerlop, one of The Gait Guys


#fudgefactor #corticalinterpolation #muscledemands #gait #gaitguys


Gait Posture. 2014 Apr;39(4):1080-5. doi: 10.1016/j.gaitpost.2014.01.018. Epub 2014 Feb 6.

Electromyographic patterns of tibialis posterior and related muscles when walking at different speeds.

Murley GS1, Menz HB2, Landorf KB2.

The Short Foot Exercise

Here it is, in all its glory...Our version of the short foot exercise. Love it or hate it, say it “doesn’t translate”, we find it a useful training tool for both the patient/client as well as the clinician. It awakens and creates awareness of the sometimes dormant muscles in the user and offers a window to monitor progression for them, as well as the observer.

Remember that the foot intrinsics are supposed to be active from midstance through terminal stance/pre swing. Having the person “walk with their toes up” to avoid overusing the long flexors is a cue that works well for us. This can be a useful adjunct to your other exercises on the road to better foot intrinsic function.


Dr Ivo Waerlop, one of The Gait Guys

Sulowska I, Mika A, Oleksy Ł, Stolarczyk A. The Influence of Plantar Short Foot Muscle Exercises on the Lower Extremity Muscle Strength and Power in Proximal Segments of the Kinematic Chain in Long-Distance Runners Biomed Res Int. 2019 Jan 2;2019:6947273. doi: 10.1155/2019/6947273. eCollection 2019

Okamura K, Kanai S, Hasegawa M, Otsuka A, Oki S. Effect of electromyographic biofeedback on learning the short foot exercise. J Back Musculoskelet Rehabil. 2019 Jan 4. doi: 10.3233/BMR-181155. [Epub ahead of print]

McKeon PO, Hertel J, Bramble D, et al. the foot core system: a new paradigm for understanding intrinsic foot muscle function Br J Sports Med March 2014 doi:10.1136/bjsports-2013- 092690

Dugan S, Bhat K: Biomechanics and Analysis of Running Gait Phys Med Rehabil Clin N Am 16 (2005) 603–621

Bahram J: Evaluation and Retraining of the Intrinsic Foot Muscles for Pain Syndromes Related to Abnormal Control of Pronation http://www.aptei.ca/wp-content/uploads/Intrinsic-Muscles-of-the-Foot-Retraining-Jan-29-05.pdf


#shortfootexercise #footexercises #footrehab #thegaitguys #gaitanalysis #gaitrehab #toesupwalking



https://vimeo.com/342800960

a happy cerebellum = better learning

We are not sure how many of these (little) guys you treat, but this article is germane.

4 hours per day, 5 days per week. It takes time to recannalize (or re create) new (or rejuvenate old) neurological pathways.

"After only two weeks, the children in the experimental group demonstrated a significant increase in locomotor and object control skills and in gross quotient (a composite measure of both skills categories). Participants’ locomotor improvements plateaued between weeks four and eight, and object control skills improved during the first two weeks but demonstrated nonsignificant changes between weeks two and four, four and six, and six and eight. A significant gain in locomotor skills also occurred between weeks four and eight."

...and don't forget about the "neurological windows" we are always talking about. Aggressive, early intervention is indicated

"Early childhood is a sensitive time in development, and motor researchers have an opportunity to improve motor skills very early—even as young as 2 years, said Ketcheson. Early intervention may give children with ASD the ability to play and interact in age-appropriate ways with their peers entering kindergarten. Early intense motor skills instruction within a CPRT framework can be a valuable addition to practitioners’ intervention strategies aimed at improving social success for children with ASD, she said."

Get them up, get them moving!

Perhaps we need to change how we are are rehabbing X (insert your favorite weight bearing joint)

image credit: https://en.wikipedia.org/wiki/StrongBoard_balance

image credit: https://en.wikipedia.org/wiki/StrongBoard_balance

We have recently run across some research that has changed the way we look at some of the rehab we do, especially proprioceptive rehab. Perhaps it will do the same for you.

Traditionally, we present increasing balance requirements to the weight bearing structure by changing one or more of the three parameters that keep us upright in the gravitational plane: vision, the proprioceptive system (which include the muscles, joints and ligaments) and the vestibular system (the utricle, saccule and semicircular canals). We have discussed them extensively in multiple articles here on the blog. We generally would make the rehab task more difficult by removing a stimulus (closing your eyes, having someone stand on foam) or challenging (standing on one leg, putting someone on a wobble board, BOSU, extending the head, etc) the to make it more durable and "educated". More difficult task + better balance = more stable joint and better outcomes. 

The importaat thing is to think about how much of each system is apportioned; we often (wrongly) assume it is pretty equally divided between the three. It turns out, that it really depends on the surface you are standing on and the circumstances.

On flat planar surfaces, the division of labor looks something like this:

  • proprioceptive system 70%
  • vestibular system 20%
  • visual system 10 %

On uneven or unstable surfaces (like a BOSU, dynadisc, foam, Swiss ball, etc), it looks like this:

  • vestibular system 70%
  • visual system 20%
  • proprioceptive system 10%

So, if we are rehabbing an ankle, it would make the most sense to do most of the rehab (and additional challenges) on a flat planar surface, perhaps incorporating things like forward, backward and side lean, toe and heel work and closed chain strengthening. WE could also close the eyes to make them more dependent on the proprio system, or extend the head 60 degrees to dampen the influence the lateral semicircular canals. We can put them on a BOSU or unstable surface but we need to remember that in that case, we will be rehabbing the vestibular system AND PERHAPS teaching THAT SYSTEM to compensate more, than the "broken" system. Yes, they get better BUT we are not fixing the system that is injured. 

You could make the argument, that your athletes/clients run/walk/exercise on uneven surfaces and use their vestibular system more.Maybe so, but is the actual injury to the vestibular system or to the musculoskeletal one?

Armed with this information, try and think of the system that is compromised and focus your efforts on that system, rather than the other two. Yes, people have vestibular dysfunction and refractive errors and need therapy, exercises and/or corrective lenses, but many of us are not vestibular or opticokinetic therapists (kudos to those of you who are!)

 

 

 

Peterka RJ, Statler KD, Wrisley DM, Horak FB. Postural Compensation for Unilateral Vestibular Loss. Frontiers in Neurology. 2011;2:57. doi:10.3389/fneur.2011.00057.

Horak FB. Postural Compensation for Vestibular Loss. Restorative neurology and neuroscience. 2010;28(1):57-68. doi:10.3233/RNN-2010-0515.

How is your foot is connected to your butt....?

EVD-marcha-075.jpg

If you have been following us for any length of time, you have heard us talk about how the lower kinetic chain is connected, how ankle rocker effects hip extension and how important hallux (great toe) extension is. 

What can we conclude from this study?

toe spreading exercises are important for reducing navicular drop (and thus mid foot pronation, at least statically)
In addition to increased abductor hallucis recruitment in ascending and descending stairs, when hip external rotation exercises were added along with toe spreading exercises folks had more recruitment of the vastus medialis (a closed chain external rotator of the leg and thigh)
 
Keep in mind:

the exercises given were all non weight bearing and open chain for the external rotators. Imagine what might have happened if they were both closed chain AND weight bearing!
They concentrated on the effects of toe spreading (AKA  lift/spread/reach) on the abductor hallucis. It also has far reaching effects on the dorsal interossei, long and short extensors of the toes. 

Abstract: The purpose of the present study was to examine the effects of toe-spread (TS) exercises and hip external rotator strengthening exercises for pronated feet on lower extremity muscle activities during stair-walking. [Subjects and Methods] The participants were 20 healthy adults with no present or previous pain, no past history of surgery on the foot or the ankle, and no foot deformities. Ten subjects performed hip external rotator strengthening exercises and TS exercises and the remaining ten subjects performed only TS exercises five times per week for four weeks. [Results] Less change in navicular drop height occurred in the group that performed hip external rotator exercises than in the group that performed only TS exercises. The group that performed only TS exercises showed increased abductor hallucis muscle activity during both stair-climbing and -descending, and the group that performed hip external rotator exercises showed increased muscle activities of the vastus medialis and abductor hallucis during stair-climbing and increased muscle activity of only the abductor hallucis during stair-descending after exercise. [Conclusion] Stair-walking can be more effectively performed if the hip external rotator muscle is strengthened when TS exercises are performed for the pronated foot.

Goo YM, Kim DY, Kim TH. The effects of hip external rotator exercises and toe-spread exercises on lower extremity muscle activities during stair-walking in subjects with pronated foot. J Phys Ther Sci. 2016 Mar;28(3):816-9. doi: 10.1589/jpts.28.816. Epub 2016 Mar 31. 
link to  FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842445/

Building a Better Bridge

Using bridge exercises? Want to make it more effective? Here's one simple way: bend the weight bearing knee to 135 degrees rather than the traditional 90. It preferentially activates the g max and med more (relatively, compared to the hamstring ; the actual values for the max and med remained similar) and the hamstring significantly less (24% vs 75%)

ijspt-12-543-F001.jpg
ijspt-12-543-F002.jpg

CONCLUSION:

"Modifying the traditional single-leg bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation.

 

Lehecka BJ, Edwards M, Haverkamp R, et al. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES. International Journal of Sports Physical Therapy. 2017;12(4):543-549.

link to free full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5534144/

Building a better Bridge: Part 2

Along the same vein as our last post, consider abducting the leg 30 degrees, which increases gluteus maximus activity, lessens anterior pelvic tilt and lessens erector spinae activity. Of course, pelvic tilt should have clued you in to a weak core in the 1st place : )

PURPOSE: To investigate how the erector spinae (ES) and gluteus maximus (GM) muscle activity and the anterior pelvic tilt angle change with different hip abduction angles during a bridging exercise.

METHODS: Twenty healthy participants (10 males and 10 females, aged 21.6 ± 1.6) voluntarily participated in this study. Surface electromyography (EMG) signals were recorded from the ES and GM during bridging at three hip abduction angles: 0°, 15°, and 30°. Simultaneously, the anterior pelvic tilt angle was measured using Image J software.

RESULTS: The EMG amplitude of the GM muscle and the GM/ES EMG ratio were greatest at 30° hip abduction, followed by 15° and then 0° hip abduction during the bridging exercise. In contrast, the ES EMG amplitude at 30° hip abduction was significantly lesser than that at 0° and 15° abduction. Additionally, the anterior pelvic tilt angle was significantly lower at 30° hip abduction than at 0° or 15°.

CONCLUSIONS: Bridging with 30° hip abduction can be recommended as an effective method to selectively facilitate GM muscle activity, minimize compensatory ES muscle activity, and decrease the anterior pelvic tilt angle.

Kang SY1, Choung SD2, Jeon HS3. Modifying the hip abduction angle during bridging exercise can facilitate gluteus maximus activity. Man Ther. 2016 Apr;22:211-5. doi: 10.1016/j.math.2015.12.010. Epub 2016 Jan 2.

 

Want to be faster?

superhero.jpg

Take this simple test. 

If you want to be faster, you had better incorporate some proprioceptive training into your plan. It is the 1st part of our mantra: Skill, Endurance, and Strength (in that order). Proprioceptive training appears to be more important that strength or endurance training from an injury rehabilitation perspective injury rehabilitation perspective as well part of an injury prevention program

 What is proprioception? It is body position awareness; ie: knowing what your limbs are doing without having to look at them.

Take this simple test:

  • Stand in a doorway with your shoes off. Keep your arms up at your sides so that you can brace yourself in case you start to fall. Lift your toes slightly so that only your foot tripod remains on the ground (ie the base of the big toe, the base of the little toe and the center of the heel.). Are you able to balance without difficulty? Good, all 3 systems (vision, vestibular and proprioceptive) are go.
  • Now close your eyes, taking away vision from the 3 systems that keep us upright in the gravitational plane. Are you able to balance for 30 seconds? If so, your vestibular and proprioceptive systems are intact.
  • Now open your eyes and look up at the ceiling. Provided you can balance without falling, now close your eyes. Extending your neck 60 degrees just took out the lateral semicircular canals of the vestibular system (see here for more info). Are you still able to balance for 30 seconds? If so, congrats; your proprioceptive system (the receptors in the joints, ligaments and muscles) is working great. If not, looks like you have some work to do. You can begin with exercises we use every day by clicking here.

Proprioception should be the 1st part of any training and/or rehabilitation program. If you don’t have a good framework to hang the rest of your training on, then you are asking for trouble. 

 

 

Timothy E. Hewett, PhD, , Kevin R. Ford, MS, Gregory D. Myer, MS, CSCS Anterior Cruciate Ligament Injuries in Female Athletes: Part 2, A Meta-analysis of Neuromuscular Interventions Aimed at Injury Prevention The American Journal of Sports Medicine Vol 34, Issue 3, pp. 490 - 498   link to free full text: http://journals.sagepub.com/doi/abs/10.1177/0363546505282619

Lephart SM1, Pincivero DM, Giraldo JL, Fu FH. The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med. 1997 Jan-Feb;25(1):130-7.

 

Want more stability, NOW?

balancing-stones.jpg

Try this...

While walking or running running (or watching a client walk, amble or run) you may be thinking  “I need to do something to improve my (their) proprioception, or they are going to fall (again)” If you were to increase your (their) surface area, and make yourself (theirself)vless top heavy, I (they) would be more stable. How can we accomplish that?

Here is what you can do:

First, spread your toes.; why not maximize the real estate available to your feet?

Next,  widen your stance (or base of gait). Spreading your weight over a larger surface area would be more stable and provide stability.

Third, raise your arms out from your sides (no don't try to fly) to provide more input from your upper extremities to your proprioceptive system (more input from peripheral joint and muscle mechanoreceptors = more input to cerebellum = better balance)

Lastly, Slow down from your blistering pace. this will give your (aging) nervous system more time to react.

All these actions were all “primitive” reactions of the nervous system when learning to walk. We did a post on that when my youngest son was learning to walk.

Want to have better balance?

  • Spread your toes
  • Widen your stance
  • Raise your arms
  • Slow down

Notice I didn’t say this would make you faster. Who is more likely to fall on a corner when being chased by a predator; the tortoise or the hare?

A little practical neurology for you this morning brought to you by the geeks of gait. Ivo and Shawn.

Which foot exercises activate the intrinsics?

So, your goal is to strengthen the intrinsics. What exercise is best? Probably the most specific one, right? Well....maybe. These 4 exercises seem to all hit them.

This study looked at the muscle activation of the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quadratus plantae, flexor digiti minimi, adductor hallucis oblique, flexor hallucis brevis, and interossei and lumbricals with the short foot, toe spreading, big toe extension and lesser toes extension exercises with T2 weighted MRI post exercises (perhaps not the best way to look at it) and shows they all work to varying degrees.

"All muscles showed increased activation after all exercises. The mean percentage increase in activation ranged from 16.7% to 34.9% for the short-foot exercise, 17.3% to 35.2% for toes spread out, 13.1% to 18.1% for first-toe extension, and 8.9% to 22.5% for second- to fifth-toes extension."

Gooding TM, Feger MA, Hart JM, Hertel J. Intrinsic Foot Muscle Activation During Specific Exercises: A T2 Time Magnetic Resonance Imaging Study. Journal of Athletic Training. 2016;51(8):644-650. doi:10.4085/1062-6050-51.10.07.

link to full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5094843/

Achilles Tendinitis?

You should read this study if you haven't already

We all treat different forms of achilles tendinitis and tendonosis. This landmark study uses loaded eccentrics and showed better tendon organization and decreased tendon thickness at follow up. 

Tendons do seem to respond better to tension and loaded eccentrics certainly seems to do the job. Though, this study is 2004 and much new research has leaned us all more toward looking at pain free isometrics , in other words, taking that tension in a pain free single range load and helping the tendon to reestablish appropriate stiffness. Tension and time under pain free load is the key, then expanding from that into more dynamic load challenges like eccentrics. But, as always, it is finding the load your client can pain free tolerate, get the organism to reload the tissue without threat and then build durability and tissue tolerance to load.

"Conclusions: Ultrasonographic follow up of patients with mid-portion painful chronic Achilles tendinosis treated with eccentric calf muscle training showed a localised decrease in tendon thickness and a normalised tendon structure in most patients. Remaining structural tendon abnormalities seemed to be associated with residual pain in the tendon."

Ohberg L, Lorentzon R, Alfredson H, Maffulli N. Eccentric training in patients with chronic Achilles tendinosis: normalised tendon structure and decreased thickness at follow up. British Journal of Sports Medicine. 2004;38(1):8-11. doi:10.1136/bjsm.2001.000284.

link to abstract: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724744/

We hope you are standing up while you read this….

A newborn’s brain is only about one-quarter the size of an adult’s. It grows to about 80 percent of adult size by three years of age and 90 percent by age five (see above). This growth is largely due to changes in individual neurons and their connections, or synapses.

The truth is, most of our brain cells are formed at birth, In fact, we actually have MORE neurons BEFORE we are born. It is the formation of synapses, or connections between neurons, that actually accounts for the size change (see 1st picture above). This is largely shaped by experience and interaction with the environment.

Do you think children’s brains are less active than adults? Think again, your 3 year old’s brain is twice as active as yours! It isn’t until later in life that you actually start dialing back on some of those connections and those pathways degenerate or fade away…a process scientists call “pruning”.

How does this apply to gait? Gait depends on proprioception, or body position awareness. Your brain needs to know where your foot is, what it is standing on and so on. Proprioception, as we have discussed in other posts, is subserved by muscle and joint receptors called mechanoreceptors (muscle spindles, golgi tendon organs and type 1-4 joint mechanoreceptors to be exact). This information is fed to 2 main areas of the brain: the cerebral cortex and the cerebellum. These 2 parts of the central nervous system are interconnected on many levels.

The cerebellum is intimately associated with learning. Try this experiment. you will need a tape recorder (guess we are showing our ages, digital recorder), a timer and a moderately difficult book.

Sit down and pick a section of the book to read. start the recorder and timer and read aloud for 2 minutes. Stop reading, stop the recorder and stop the timer.

Stand up, somewhere you won’t get hurt if you fall. Stand on 1 leg (or if available, stand on a BOSU or rocker board). Open the book to a different spot. Start the timer, the recorder and start reading again for 2 minutes.

Sit back down and grab a snack. Listen to the 2 recordings and pay attention to the way you sound when you were reading, the speed, fluency and flow of words. Now think about recall. Which passage do you remember better?

The brain works best at multitasking and balance and coordination activities intimately affect learning. Having children sit in a class room and remain stationary and listen to a lecture is not the best way to learn. We always tel our students to get up and move around…

This article looks at this relationship in a slightly different way.

We hope you are still standing : )

 

 Lopes VP, Rodrigues LP, Maia JA, Malina RM.Motor coordination as predictor of physical activity in childhood. Scand J Med Sci Sports. 2011 Oct;21(5):663-9. doi: 10.1111/j.1600-0838.2009.01027.x. Epub 2010 Mar 11

Abstract

This study considers relationships among motor coordination (MC), physical fitness (PF) and physical activity (PA) in children followed longitudinally from 6 to 10 years. It is hypothesized that MC is a significant and primary predictor of PA in children. Subjects were 142 girls and 143 boys. Height, weight and skinfolds; PA (Godin-Shephard questionnaire); MC (Körperkoordination Test für Kinder); and PF (five fitness items) were measured. Hierarchical linear modeling with MC and PF as predictors of PA was used. The retained model indicated that PA at baseline differed significantly between boys (48.3 MET/week) and girls (40.0 MET/week). The interaction of MC and 1 mile run/walk had a positive influence on level of PA. The general trend for a decrease in PA level across years was attenuated or amplified depending on initial level of MC. The estimated rate of decline in PA was negligible for children with higher levels of MC at 6 years, but was augmented by 2.58 and 2.47 units each year, respectively, for children with low and average levels of initial MC. In conclusion MC is an important predictor of PA in children 6-10 years of age.

More on that post operative foot

This is part 2 of a series following a case. If you missed part 1, please go back here and read what we found.

The patient returns 1 week later and reports being approximately 25% improved. She has been performing her "toes up" exercises while walking all the time. She is having some difficulty still with balance. She has been performing her toe waving exercises a few times daily.

X-rays performed 2/17 reveal screw fixation of the navicular. I cannot find evidence of a previous cuboid fracture. The ankle mortise is clear.

She still has 4/5 weakness of the long and short toe extensors; long greater than short. She has tenderness to palpation along the anterior aspect of the deltoid ligament on the left hand side which is made worse with eversion of the ankle. There is a loss of long axis extension at the talocrural and talonavicular articulations. Less tenderness is noted in the inter metatarsal intervals and the interossei musculature.

There is significant improvement over last time. Lack of fixation of the navicular to other articulations will allow us to perform manipulation/mobilization of the foot.

We treated with diagnostic manipulation and mobilization of the foot. I reviewed exercises to date and added the shuffle walk exercise. Since acupunture and needling can influence blodd flow (1-4) We utilized acupuncture points stomach 36, spleen 6, gallbladder 41, liver 3, points in the inter metatarsal intervals, bladder 67 and liver 1.Neelding has been shown to improve muscke activation (4-7) so I did origin/insertion stimulation of the long extensors with 3 sets of 10 repetition cocontraction along with origin/insertion stimulation of the short extensors with 3 sets, 10 repetitions cocontraction was performed. She will follow back in approximately 2 weeks because of travel.

So far, so good. We will keep you posted : )

 

1. Sandberg, M., Larsson, B., Lindberg, L.-G. and Gerdle, B. (2005), Different patterns of blood flow response in the trapezius muscle following needle stimulation (acupuncture) between healthy subjects and patients with fibromyalgia and work-related trapezius myalgia. European Journal of Pain, 9: 497. doi:10.1016/j.ejpain.2004.11.002

2.  Cagnie, Barbara et al. The Influence of Dry Needling of the Trapezius Muscle on Muscle Blood Flow and Oxygenation Journal of Manipulative & Physiological Therapeutics , Volume 35 , Issue 9 , 685 - 691

3. Tsuchiya, Masahiko; Sato, Eisuke F.; Inoue, Masayasu; Asada, Akira† Acupuncture Enhances Generation of Nitric Oxide and Increases Local Circulation  Anesthesia & Analgesia: February 2007 - Volume 104 - Issue 2 - pp 301-307

4. Jan Dommerholt Dry needling — peripheral and central considerations Journal Of Manual & Manipulative Therapy Vol. 19 , Iss. 4,2011

5. Zanin, Marília Silva et al. Electromyographic and Strength Analyses of Activation Patterns of the Wrist Flexor Muscles after Acupuncture Journal of Acupuncture and Meridian Studies , Volume 7 , Issue 5 , 231 - 237

6. https://youtu.be/02-M0i6AKAk

7. Fragoso APS, Ferreira AS. Immediate effects of acupuncture on biceps brachii muscle function in healthy and post-stroke subjects. Chinese Medicine. 2012;7:7. doi:10.1186/1749-8546-7-7.

 

Things often work better in pairs… Especially with Exercise

You have heard us always talk about how the lower kinetic chain is connected, how ankle rocker effects hip extension and how important hallux (great toe) extension is.

What can we conclude form this study?

  • toe spreading exercises are important for reducing navicular drop (and thus mid foot pronation, at least statically)
  • In addition to increased abductor hallucis recruitment in ascending and descending stairs, when hip external rotation exercises were added along with toe spreading exercises folks had more recruitment of the vastus medialis (a closed chain external rotator of the leg and thigh)

Keep in mind:

  • the exercises given were all non weight bearing and open chain for the external rotators. Imagine what might have happened if they were both closed chain AND weight bearing!
  • They concentrated on the effects of toe spreading (AKAlift/spread/reach) on the abductor hallucis. It also has far reaching effects on the dorsal interossei, long and short extensors of the toes.

 

Goo YM, Kim DY, Kim TH. The effects of hip external rotator exercises and toe-spread exercises on lower extremity muscle activities during stair-walking in subjects with pronated foot. J Phys Ther Sci. 2016 Mar;28(3):816-9. doi: 10.1589/jpts.28.816. Epub 2016 Mar 31.

link toFREE FUL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4842445/

 

Cerebellar impairment = Gait Changes = Happy Patient

This is a fairly info dense post with many links. please take the time to explore each one to get the most out of it. 

If you have been with us here on TGG long enough, you know the importance of the cerebellum and gait. Mechanoreceptor information travels north to the cortex via the dorsal (and ventral) spinocerebellar pathways to be interpreted (and interpolated, in the case of the ventral pathway), with the information relaying back to the motor cortex and vestibular nucleii and eventually back down to the alpha (and gamma) motor neurons that proved the thing you call movement and thus gait. (Cool video on spinocerebellar pathways here and here).

This FREE FULL TEXT paper has some cool charts, like this one, that show the parameters of gait that change with cerebellar dysfunction (in this case, disease, although idiopathic means they really don't know. Anatomical or physiological lesions will behave the same, no? Doesn't the end result of a functional short leg look the same as an anatomical one?)

Looking tat this chart, what do we really see? People with cerebellar dysfunction:

  • a shorter step length
  • a wider base of gait
  • decreased velocity
  • increased lateral sway
  • slower overall gait cycle

Hmmmm...Beginning to sound like a move toward more primitive gait. Just like we talked about in this post on the 5 factors and proprioception here several years ago. We like to call this decomposition of gait. 

They go on to talk about specific anatomic regions of the cerebellum and potential correlation to specific gait abnormalities, like the intermediate zone and interposed nucleii controlling limb dynamics and rhythmic coordination like hypermetria (overshooting a target), especially when walking in uneven surfaces or when gait is perturbed, like walking into something or changes in surface topography, or the lateral zone of the cerebellum, for voluntary limb control, such as where you place your foot. Definitely gait nerd material.

There aren't any direct tips on rehab, but it would stand to reason that activities that activate the cerebellum and collateral pathways would give you the most clinical gains. Lots of propriosensory exercises like here, here, here and here for a start.

Happy cerebellum = Happy patient

The Gait Guys

 

 

 

 

Winfried Ilg, Heidrun Golla, Peter Thier, Martin A. Giese; Specific influences of cerebellar dysfunctions on gait. Brain 2007; 130 (3): 786-798. doi: 10.1093/brain/awl376  FREE FULL TEXT

Achilles Tendinitis

You should read this study if you haven't already

We all treat different forms of achilles tendinitis and tendonosis. This landmark study uses loaded eccentrics and showed better tendon organization and decreased tendon thickness at follow up. 

Tendons do seem to respond better to tension and loaded eccentrics certainly seems to do the job. 

"Conclusions: Ultrasonographic follow up of patients with mid-portion painful chronic Achilles tendinosis treated with eccentric calf muscle training showed a localised decrease in tendon thickness and a normalised tendon structure in most patients. Remaining structural tendon abnormalities seemed to be associated with residual pain in the tendon."

Ohberg L, Lorentzon R, Alfredson H, Maffulli N. Eccentric training in patients with chronic Achilles tendinosis: normalised tendon structure and decreased thickness at follow up. British Journal of Sports Medicine. 2004;38(1):8-11. doi:10.1136/bjsm.2001.000284.

link to abstract: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724744/

History shows...Keep it Simple... Even with those foot exercises

Being a foot nerd, certain things have a tendency to provide entertainment for me. One such thing was a recent article that was published in Foot and Ankle Surgery about the history of military flat foot care. Review of this appeared in one of my favorite journals: lower extremity review.

There was nothing earthshaking in the article other than the emphasis on function was made throughout the article. Exercises were emphasized (though I really don't like the toe flexion ones). And that was an interesting quote from the article

"Far more emphasis should be placed on the functioning of the foot, during the activities that need to be undertaken rather than the height of the arches alone".

They go on to describe a simple exercise where during a march is (is that were often required to do during WW1) people were instructed to keep their toes pointed straight ahead and shift the knees out words to offload the weight laterally. In that particular study, 75%of the people return to their groups and 54% were able to go back to full duty. All with some simple, straightforward instruction.

The lower extremity review article emphasizes intrinsic muscle strengthening for condition such as plantar fasciitis, Hallux valgus and lesser toe deformities. I would have to say that I couldn't agree more :-)

So goes the life of a foot nerd…

 

 

Nearly MT J Foot Ankle Surg. 2016 May-Jun;55(3):675-81. doi: 10.1053/j.jfas.2016.01.028. Epub 2016 Mar 12.

 

GOT ENDURANCE?

We all realize the importance of endurance work, especially when it comes to core work. If we had a dollar for every patient that lacked lower back extensor endurance that had a gait problem......

In this video, Dr Ivo demonstrates his adaptation of Dr Eric Goodman's "Founders" sequence, along with some clinical commentary. Try this on yourself or with your patients/clients today. It's easy and effective.

Acupuncture/Dry Needling and Proprioception. A Winning combination.

 

What a great combination of therapies for folks with chronic ankle instability, or almost any injury for that matter! Taking 2 modalities that emphasize afferent input from the peripheral mechanoreceptor system, which has such a large influence on the cerebellum as well as the segmental and descending pain inhibition pathways.

Did you notice they used the trigger points in the peroneus longs muscle to needle? Though they didn't say it, did you remember that that the point correlates to a great point: Gallbladder 34, which is an empirical point for musculoskeletal pain? Interesting how this muscle influences both frontal and saggital plan stability. 

Though the techniques of exercise could use some refinement (check out the gents posture in the photo, sure looks like he could use some gluteus medius work!), this is a good overview that provides evidence that utilizing spacial summation (combining multiple techniques that provide afferent input to more than one modality to cause an effect) has better outcomes than one alone. Put this one on your reading list : )

Salom-Moreno J, Ayuso-Casado B, Tamaral-Costa B, Sánchez-Milá Z, Fernández-de-Las-Peñas C, Alburquerque-Sendín F.Trigger Point Dry Needling and Proprioceptive Exercises for the Management of Chronic Ankle Instability: A Randomized Clinical Trial. Evid Based Complement Alternat Med. 2015;2015:790209. doi: 10.1155/2015/790209. Epub 2015 Apr 30.

link to FREE FULL TEXT: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4430654/