Tricks of the trade: Backward walking

image credit: https://pixabay.com/vectors/slide-sliding-falling-stickman-151861/

image credit: https://pixabay.com/vectors/slide-sliding-falling-stickman-151861/

A single event can generate asynchronous sensory cues due to variable encoding, transmission, and processing delays. Robert Peterka talks about this, along with posture compensation and system apportionment when it comes to balance and coordination of the visual, vestibular and proprioceptive systems. We have talked about that here on the blog in the past.

We are often looking for ways to “highlight” pathology and make it more visible in the clinical exam. Having your patient/client walk backwards is one of those tools.

Walking and remaining upright in the gravitational plane requires 3 integrated systems to work in concert with one another: the visual, vestibular and proprioceptive systems. Backwards walking requires a more coordinated effort AND IF there is a “hiccup” or extra demand on the system (the proprioceptive in this case), neurological processing can take a little longer, efforts can be delayed and the end result is a greater compensation is needed; this often makes pathology more evident.

Try having your client walk backwards when you are doing your exam and see what we mean. We think you will be surprised with the results : )

Dr Ivo Waerlop, one of The Gait Guys

Peterka RJStatler KDWrisley DMHorak FB. Postural compensation for unilateral vestibular loss. Front Neurol. 2011 Sep 6;2:57. doi: 10.3389/fneur.2011.00057. eCollection 2011.

temporal Shayman CSSeo JHOh YLewis RFPeterka RJHullar TE.Relationship between vestibular sensitivity and multisensory temporal integration. J Neurophysiol. 2018 Oct 1;120(4):1572-1577. doi: 10.1152/jn.00379.2018. Epub 2018 Jul 18.

Hawkins KABalasubramanian CKVistamehr AConroy CRose DKClark DJFox EJ. Assessment of backward walking unmasks mobility impairments in post-stroke community ambulators. Top Stroke Rehabil. 2019 May 12:1-7. doi: 10.1080/10749357.2019.1609182. [Epub ahead of print]

#backwardwalking #clinicalexam #thegaitguys #gaitpathology #clinicaltricksofthetrade

Want to bring out gait pathology? Add something new into the mix...

image source: https://en.wikipedia.org/wiki/Walking

image source: https://en.wikipedia.org/wiki/Walking

We have talked about bringing out compensations and asymmetries in gait patterns by adding a novel stimulus to the exam, like having the client/patient put their hands over their heads, or close their eyes. Here is yet another tool for your toolbox: having the client walk backwards.

Both forward and backward walking share pattern generation control circuits in the brainstem, providing similar (though reversed) kinematic patterns. Backward walking requires different muscle activation sequences which can highlight subtle gait asymmetries, particularly in individuals that have cortical impairment (like the kids with cerebral palsy in this paper) or perhaps people with more subtle cortical impairments, like cerebellar dysafferentation from abnormal joint and muscle mechanoreceptor input and integration. Don’t believe us or what the study says, try it on yourself! It can be a humbling experience : )

In part, the study concludes: “The observed spatiotemporal asymmetry assessments may reflect both impaired supraspinal control and impaired state of the spinal circuitry.”

The next time you are having a difficult time seeing something in an evaluation, or are trying to bring out an asymmetry, in addition to your other tricks, have them walk backwards.

Cappellini G, Sylos-Labini F, MacLellan MJ, Sacco A, Morelli D, Lacquaniti F, Ivanenko Y. Backward walking highlights gait asymmetries in children with cerebral palsy. J Neurophysiol. 2018 Mar 1;119(3):1153-1165. doi: 10.1152/jn.00679.2017. Epub 2017 Dec 20.

A great, FREE, full text on forward and backward walking kinematics and a possible link to central pattern generators.   “Leg kinematics during backward walking (BW) are very similar to the time-reversed kinematics during forward walking (FW). This suggests that the underlying muscle activation pattern could originate from a simple time reversal, as well…  "We concluded that the changes in muscle contributions imply that a simple time reversal would be insufficient to produce BW from FW. We therefore propose that BW utilizes extra elements, presumably supraspinal, in addition to a common spinal drive. These additions are needed for propulsion and require a partial reconfiguration of lower level common networks.”   http://jn.physiology.org/content/107/12/3385      Similar muscles contribute to horizontal and vertical acceleration of center of mass in forward and backward walking: implications for neural controlKaren Jansen, Friedl De Groote, Firas Massaad, Pieter Meyns, Jacques Duysens, Ilse JonkersJournal of Neurophysiology Published 15 June 2012 Vol. 107 no. 12, 3385-3396 DOI: 10.1152/jn.01156.2011

A great, FREE, full text on forward and backward walking kinematics and a possible link to central pattern generators.

“Leg kinematics during backward walking (BW) are very similar to the time-reversed kinematics during forward walking (FW). This suggests that the underlying muscle activation pattern could originate from a simple time reversal, as well…

"We concluded that the changes in muscle contributions imply that a simple time reversal would be insufficient to produce BW from FW. We therefore propose that BW utilizes extra elements, presumably supraspinal, in addition to a common spinal drive. These additions are needed for propulsion and require a partial reconfiguration of lower level common networks.”

http://jn.physiology.org/content/107/12/3385


Similar muscles contribute to horizontal and vertical acceleration of center of mass in forward and backward walking: implications for neural controlKaren Jansen, Friedl De Groote, Firas Massaad, Pieter Meyns, Jacques Duysens, Ilse JonkersJournal of Neurophysiology Published 15 June 2012 Vol. 107 no. 12, 3385-3396 DOI: 10.1152/jn.01156.2011