If you are a sprinter, how you load the forefoot bipod might be a variable for speed or injury. Tendons can change their cross sectional area, if you load them.

Screen Shot 2019-06-10 at 6.17.21 PM.png

Of course this article is not exclusive for sprinters, it pertains to any running sport, even endurance.

Maximum isometric force had increased by 49% and tendon CSA by 17% !
Tendons can change their cross sectional area, if you load them.

Here I show lateral forefoot loading in a heel raise, and a medial forefoot loading in heel raise. This has to be part of the discovery process outlined below. Forefoot types will play into the loading choice, and unequal strength of the medial or lateral calf compartment will also play into the loading choice made. Where do you need to put your strength ? And is the forefoot competent to take that loading challenge ? Meaning, do they have a forefoot valgus? A forefoot supinatus ? These things matter. If you are a sprinter, how you load the forefoot bipod might be a variable of foot type, asymmetrical posterior compartment strength, or foot strike pattern in the frontal plane (search our blog for cross over gait and glute medius targeting strategies for step width) ,or a combination of several or all of the above. These things matter, and why and where you put your strength matters, if you are even aware of where and how you are putting the loads, and why of course. Of course, then there are people like the recent Outside online article that says how you foot strike doesn’t matter, but it does matter. But of course, if you do not know the things we have just mentioned, it is easy to write such an article.

Isometrics are useful, they have their place. In a recent podcast we discussed the place and time to use isometrics, isotonics, eccentrics and concentrics.
One of the goals in a tendinopathy is to restore the tendon stiffness. Isometrics are a safe way to load the muscle tendon complex without engaging a movement that might have to go through a painful arc of movement. With isometrics here is neurologic overspill into the painful arc without having to actually go there.
The key seems to be load. More load seems to get most people further along. Remember, the tendon is often problematic because it is inflammed and cannot provide a stiffness across its expanse. Heavy isometric loading seems to be a huge key for most cases. But, we have to say it here, not everyone fits this mold. Some tendons, in some people, will respond better to eccentrics, and strangely enough, some cases like stretching (perhaps because this is a subset of an eccentric it seems or because there is a range of motion issue in the joint that is a subset of the problem). Now the literature suggests that stretching is foolish, but each case is unique all in its own way, and finding what works for a client is their medicine, regardless of what the literature and research says.
Finding the right load for a given tendon and a right frequency of loading and duraction of loading is also case by case specific. Part of finding the right loading position is a discovery process as well, as noted in the photos above. Finding the fascicles you want to load, and the ones you do not want to load (painful) can be a challenging discovery process for you and your client. Finding the right slice of the pie to load, and the ones not to load takes experimentation. When it is the achilles complex, finding the safe However, if one is looking for a rough template to build from, brief, often, heavy painfree loads is a good template recipe to start with.

Here, in this Geremia et al article, "ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion."
They discovered that, "At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young’s modulus, by 86%.

Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans. Jeam Marcel Geremia, Bruno Manfredini Baroni, Maarten Frank Bobbert, Rodrigo Rico Bini, Fabio Juner Lanferdini, Marco Aurélio Vaz
European Journal of Applied Physiology
August 2018, Volume 118, Issue 8, pp 1725–1736

Another way to alter loading rates and potentially reduce injuries?

How about providing something a simple as visual and auditory cues?

In his particular study they cued people to either
1. Forefoot strike
2. Decrease average vertical loading by 15% or
3.Decrease step length by 7-1/2 per cent (ie increase step frequency)

All 3 decreased eccentric knee joint work; but increased ankle joint work. Forefoot strike as well as cues to decrease average vertical loading (which would cause you to forefoot strike) increased ankle joint work. I guess that if you steal from Peter you need to pay Paul! Decreasing step length had no adverse effects.

What are you trying to accomplish? If it is decreased knee joint loading, such as in patients with patellofemoral problems, then this could be a very good thing. If you have a patient with a raging achilles tendinitis, then perhaps not.

Having someone decrease their step length (effectively increasing their cadence) can be one of the safest ways to decrease vertical loading rates.

Baggaley M, Willy RW, Meardon S. Primary and secondary effects of real-time feedback to reduce vertical loading rate during running Scand J Med Sci Sports. 2016 Mar 19. doi: 10.1111/sms.12670. [Epub ahead of print].

Forefoot strike running: Do you have enough calf muscle endurance to do it without a cost ?

Below you will find an article on footwear and running. Rice et al concluded that 

“ When running in a standard shoe, peak resultant and component instantaneous loadrates were similar between footstrike patterns. However, loadrates were lower when running in minimal shoes with a FFS (forefoot strike), compared with running in standard shoes with either foot strike. Therefore, it appears that footwear alters the loadrates during running, even with similar foot strike patterns.

They concluded that footwear alters the load rates during running. No brain surgery here. But that is not the point I want to discuss today. Foot strike matters. Shoes matter. And pairing the foot type and your strike patterns of mental choice, or out of natural choice, is critical. For example, you are not likely (hopefully) to choose a HOKA shoe if you are a forefoot striker. The problem is, novice runners are not likely to have a clue about this, especially if they are fashonistas about their reasoning behind shoe purchases. Most serious runners do not care about the look/color of the shoe. This is serious business to them and they know it is just a 2-3 months in the shoe, depending on their mileage. But, pairing the foot type, foot strike pattern and shoe anatomy is a bit of a science and an art. I will just mention our National Shoe Fit Certification program here if you want to get deeper into that science and art. (Beware, this is not a course for the feint of heart.)

However, I just wanted to approach a theoretical topic today, playing off of the “Forefoot strike” methodology mentioned in the article today.  I see this often in my practice, I know Ivo does as well. The issue can be one of insufficient endurance and top end strength (top end ankle plantar flexion) of the posterior mechanism, the gastrocsoleus-achilles complex. If your calf complex starts to fatigue and you are forefoot striker, the heel will begin to drop, and sometimes abruptly right after forefoot load. The posterior compartment is a great spring loading mechanism and can be used effectively in many runners, the question is, if you fatigue your’s beyond what is safe and effective are you going to pay a price ? This heel drop can put a sudden unexpected and possibly excessive load into the posterior compartment and achilles. This act will move you into more relative dorsiflexion, this will also likely start abrupt loading the calf-achilles eccentrically. IF you have not trained this compartment for eccentric loads, your achilles may begin to call you out angrily. Can you control the heel decent sufficiently to use the stored energy efficiently and effectively? Or will you be a casualty?  This drop if uncontrolled or excessive may also start to cause some heel counter slippage at the back of the shoe, friction is never a good thing between skin and shoe. This may cause some insertional tendonitis or achilles proper hypertrophy or adaptive thickening. This may cause some knee extension when the knee should not be extending. This may cause some pelvis drop, a lateral foot weight bear shift and supination tendencies, some patellofemoral compression, anterior meniscofemoral compression/impingement, altered arm swing etc.  You catch my drift. Simply put, an endurance challenged posterior compartment, one that may not express its problem until the latter miles, is something to be aware of. 

Imagine being a forefoot striker and 6 miles into a run your calf starts to fatigue. That forefoot strike now becomes a potential liability. We like, when possible, a mid foot strike. This avoids heel strike, avoids the problems above, and is still a highly effective running strike pattern. Think about this, if you are a forefoot striker and yet you still feel your heel touch down each step after the forefoot load, you may be experiencing some of the things I mentioned above on a low level. And, you momentarily moved backwards when you are trying to run forwards. Why not just make a subtle change towards mid foot strike, when that heel touches down after your forefoot strike, you are essentially there anyways. Think about it.

Shawn Allen, one of The Gait Guys

Footwear Matters: Influence of Footwear and Foot Strike on Loadrates During Running. Medicine & Science in Sports & Exercise:
Rice, Hannah M.; Jamison, Steve T.; Davis, Irene S.

http://journals.lww.com/acsm-msse/Abstract/publishahead/Footwear_Matters___Influence_of_Footwear_and_Foot.97456.aspx

Steppage gait ? Or just a runway model ?  Take the thinking farther.
Today we have a short blog post for you. You may take the topic simply on the surface or cogitate over it and find some deeper epiphanies from the well of knowledge we have tried to present here on our blog for the past 4+ years.  
It is clear that in this video that the model has a consciously driven steppage gait. Meaning, she is lifting her limb/foot via exaggerated hip flexion and knee flexion to clear the foot.  This is often seen unilaterally in a foot drop case where the client has a neurologic lesion that for one reason or another has impaired the client’s ability to extend the toes or dorsiflex the ankle sufficiently to clear the foot (so they do not drag toes and trip/fall).  
But, why is she doing this steppage gait ? It is highly unlikely that she has bilateral lesions.  Sure, she was asked to walk this way by her mentor but again, take it further.  Is there a factor making this gait necessary regardless of the coaching ? 
Obviously the answer is yes or we wouldn’t be doing a blog post on this topic.  She is wearing ridiculously high heels. This is forcing her into an extreme plantarflexed foot and ankle posture. IF she were to swing her leg normally during the swing phase she would drive the foot and ankle into dorsiflexion (a normal gait event) and the long pointed heel would be made more prominent as it was driven forward and downward. This would surely catch on the ground, immediately driving the foot into sudden violent forefoot loading and pitch her into a forward fall.  Yes, you have seen this on the run way videos on youtube, and yes we know you laughed too ! You see, when wearing heels this high, one must deploy a certain degree of steppage gait to clear the heel because ankle plantarflexion is fraught with the risk we just discussed above, the heel is too prominent and will catch. How much steppage (knee flexion and hip flexion to clear the foot) is necessary ? Well, to a large degree it depends on how much of a heel is present.  If you are wearing a small heeled shoe, lets say 1 inch, then a small steppage is necessary.
None the less, there is a bigger problem lurking and brewing underneath when heels are a regular occurrence. Slowly and gradually the disuse of the anterior compartment muscles (Extensor dig., Ext. hallucis, peroneus tertius, tibialis anterior) will weaken and the posterior compartment will shorten respectively. IF left too long, it will result in tightness (yes, there is a difference between tightness and shortness, one is a neurlogical protective mechanism, the other is a more permanent change.) We have said this many times here and in our videos, much of posterior compartment problems (ie achilles tendonitis, Sever’s, Hagglunds etc) are related to a degree of anterior compartment weakness, skill deficits or endurance challenges.  Wearing high heels often will often, but not always, increase this risk. 
If you are an athlete, but someone who wears high heels often, you may have to do extra work to keep your anterior compartment competent on several levels.  Eccentric strength is just as important as concentric in this region. Remember, many gait problems come on slowly, a slow simmering smoldering fire. And remember this last point about heeled shoes, your forefoot is always being loaded initially in ankle plantarflexion, this is not normal and in time this will have a cost in many people.  
One last thing. We are not necessarily talking about dress shoes, although they are a greater culprit.  Many running shoes still have accentuated rear foot stack heights where the heel will be many millimeters above the plane of the forefoot.  Do not discount these shoes as a possible contributor of your problem, remember, physiological adaptation takes time to express into a biomechanical symptom creating problem, and it may take quite some time to resolve your compensations and adaptations.
PS: drive that “cross over gait” lady.  Fools.
Shawn and Ivo
the gait guys

Ankle Dorsiflexion: Even in sprinters who land on the forefoot often heel strike, a retrograde strike if you will.

Many people think of heel strike followed by midfoot/tripod contact phase followed by ankle dorsiflexion, aka ankle rocker.  Heel strike is normal in the walking gait cycle. In some runners, depending on foot type, strength, flexibilty and several other factors, heel strike may be considered normal and may be essential for normal injury free mechanics. However, in recent years we tend to see the media and research investigate a midfoot or forefoot strike pattern. If you have been here with us on TGG for a year or 2-3 you will know we are big advocates of a midfoot strike pattern for several reasons which we will not go into again in this article. (Feel free to SEARCH our blog for MIDFOOT strike articles).  

However, one rarely sees anyone or any source talking about the retrograde heel contact when forefoot strike patterns are used.  Here, in this video, you can see several of these top level athletes who are trying to go forward at top end speed, but who are tapping the heel down on many loading responses. This can be thought of as a retrograde movement and could in a biomechanical way of thinking be considered non-productive. In other words, they are trying to move forward and yet the heel is touching down which is a backwards movement. This point can be argued but that is not the point of this article. The point that we are trying to make is that in order to drop the heel down, and especially if the heel touches, that the runner had better have sufficient ankle rocker/dorsifleixon otherwise the arch may be asked to collapse via excessive pronation (to perform the heel tap) which will drive an internal spin movement when the leg is supposed to be externally rotating to a rigid supinated foot for propulsive toe off. This negative scenario is a huge power leak for a sprinter, or any runner for that matter when they are ramping up speed.  

So, why does this happen ?  Well, for some it can help to load the posterior mechanism, the gastrocsoleus-achilles complex for conservation and power conversion.  It also enables more hip extension and thus more gluteal function. Longer stride means more efficient and greater arm swing which is a huge accessory power source for a sprinter. This also lengthens the stride, they feed off of each other. There are many benefits, if you have sufficient ankle rocker range in the ankle to begin with.  In some runners who do not have the requisite ankle rocker range, you may often see the increased foot progression angle and external limb spin and/or the dreaded adductor twist of the heel (aka  abductory twist of the foot).  These are strategies to get more hip extension and more gluteal function without finding it via the ankle dorsiflexion, where you want to see it.  Remember, the body is a brilliant compensatory and substituter. If the body cannot find a range at one joint it will find it at the next proximal or distal joint. And when that loss is at the ankle, motor patterns options dictate you either find it at foot pronation or hip extension.

Maybe, just maybe we should have called this blog article “Can you hold the foot tripod all the way through the stance phase, even through retrograde heel touch down ? If you cannot, trouble could be on the horizon. ”  But that is a really dumb title.  

Shawn and Ivo

the gait guys

Podcast 34: Chimp feet, Marathon Monks & Statin drugs

podcast link:

http://thegaitguys.libsyn.com/podcast-34-chimp-feet-marathon-monks-statin-drugs

iTunes link:

http://thegaitguys.libsyn.com/podcast-33-heart-beats-toe-walking-crawling

Gait Guys online /download store:

http://store.payloadz.com/results/results.aspx?m=80204

other web based Gait Guys lectures:

www.onlinece.com   type in Dr. Waerlop or Dr. Allen  Biomechanics

Today’s show notes:

 1.Did Rock Climbing Help Us Start Walking Upright?   By Shaunacy Ferro A new theory suggests humans became bipedal so that we could scramble up rugged terrain.
http://www.popsci.com/science/article/2013-05/did-rock-climbing-help-us-start-walking-upright?src=SOC&dom=tw


2. http://en.wikipedia.org/wiki/Kaih%C5%8Dgy%C5%8D

The Running Marathon monks of Mt. Hiei

The Kaihōgyō is a set of the ascetic physical endurance trainings for which the Japanese “marathon monks” of Mt. Hiei are known. These Japanese monks are from the Shugendō and the Tendai school of Buddhism, a denomination brought to Japan by the monk Saichō in 806 from China.


3. http://www.runnersworld.com/general-interest/do-you-have-chimpanzee-feet

Do you have Chimpanzee feet ?

About 8% of people tested by Boston University researchers had midfoot flexibility of the sort that apes use to climb trees, according to a study published in the American Journal of Physical Anthropolgy.

4. Statins Linked With Risk of Musculoskeletal Injury

Michael O'Riordan

http://www.medscape.com/viewarticle/805369?src=wnl_edit_medn_wir&spon=34

http://archinte.jamanetwork.com/article.aspx?articleid=1691918

Can Statins Cut the Benefits of Exercise?

By GRETCHEN REYNOLDS

http://well.blogs.nytimes.com/2013/05/22/can-statins-curb-the-benefits-of-exercise/

http://www.ncbi.nlm.nih.gov/pubmed/23583255

5. Shoes: The Primal Professional.com

http://theprimalprofessional.com/products/pre-order-the-primal-professional

http://well.bradrourke.com/2013/05/my-new-primal-dress-shoes/

6. Hallux valgus and lesser toe deformities are highly heritable in adult men and women: The Framingham foot study

Marian T. Hannan
http://onlinelibrary.wiley.com/doi/10.1002/acr.22040/abstract;jsessionid=99975015C3EE5678E6351273C2CD42A0.d02t04

7. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers

Kulmala, Juha-Pekka; Avela, Janne; Pasanen, Kati; Parkkari, Jari

http://journals.lww.com/acsm-msse/Abstract/publishahead/Forefoot_strikers_exhibit_lower_running_induced.98324.aspx

8. Why Where You Land On Your Foot Isn’t That Important

http://www.kinetic-revolution.com/why-where-you-land-on-your-foot-isnt-that-important/

A visual demonstration of 3 different foot strike patterns. Lets test some of what you have learned here at The Gait Guys over the last few months. 
  On the readers left, blue shirt Bib 232:   The left leg appears to have all joints stacked at this viewer angle (knee is vertically over the foot, hip is over the knee). What we love here is that the foot profile (look at the black sole of the shoe) is parallel to the ground, it is hard to believe that it won’t strike as such. The medial and lateral aspects of the foot should strike flush and simultaneously. This is a neutral foot and is very likely without valgus or varus forefoot typing.  The tibia looks pristine and straight without any torsion, at least from this limited perspective. He also looks to be striding nicely, it seems to appear (albeit this is reaching from this head on view) that the foot will strike below the body mass, this may be because he subtly appears to be leaning forward, again hard to see on this view. 
  Middle runner, white shirt:   We see some problems here.  First of all, it appears (and again, this is reaching from a front on view) that this runner is striding out with the foot beyond the body mass and will likely heel strike, he also seems to be in more backward lean that the Blue Bib Man but again hard to tell on a frontal view. We also see that the foot is pitched in inversion (note the outward tip of his foot compared to the man in Blue) quite aggressively which will facilitate a strong excessive lateral heel and/or forefoot strike pattern.  You can also see that drawing a line through the length of the long bones (tibia and femur) that they are in alignment, they are even in alignment with the 90 degree perpendicular to the forefoot inverted angulation.  This clearly represents our classic “cross over gait” which was first brought to you and the internet by yours truly a few years ago (here on  Youtube link ).  It is easy to see that the projected foot landing will be on a virtual line and thus appear to run on a line or even cross the feet over the line indicating that this client is not stacking the foot, knee and hips vertically and thus challenging the gluteus medius and hip stability into the frontal plane ( video link here ). This client will be wasting energy and efficiency in the frontal plane (side to side movement) and challenging the core, risking knee tracking issues and excessive foot pronation forces beyond the safe and normal.   
  Running on the readers right, green shirt #8:   There appears to be a strong stance phase leg collapse, the hip is lateral to the foot and the knee is perhaps on its way to medial from a vertical line from the foot. This can be, and often is, from the issues of cross over described in the middle runner above but it can also be simply found in someone who is striking with the foot/knee/hip joints stacked but does not have sufficient gluteus medius strength to keep the pelvis level on the horizon (thus drift laterally). When this happens the downward collapse of the opposite side pelvis is often, but not always, see as a valgus collapse at the knee since the femur is allowed to drift medially from insufficient strength, skill or endurance pairing of the gluteus medius/maximus pairing and the medial quadriceps. This client is  likely a cross over victim as well and this would give good reason to the aforementioned.  Again, this is all theoretical from a static picture but knowing these patterns like we do, we know these typical patterns of breakdown. This is also suspect because of the foot more positioned under the midline of the body instead of under the knee and hip vertically stacked and the obvious proximity of the knees to one another.  These clients often kick or brush the foot or shoe against the stance phase lower leg as they swing the foot through.  
 Who is going to win this race ? One cannot tell. But if they were the same on all levels of endurance, training, VO2 max and equal on every parameter except what was mentioned above, well then our man in Blue, # 232 would be the most efficient and likely the least injured. 
 Photo from an Outside Magazine article. We Would reference it, and would be happy to do so, but we cannot find the net article anywhere now. Please send it our way if you happen across it ! 
 Shawn and Ivo, The Gait Guys … .  followed in 51 countries and counting.

A visual demonstration of 3 different foot strike patterns. Lets test some of what you have learned here at The Gait Guys over the last few months.

On the readers left, blue shirt Bib 232:
 The left leg appears to have all joints stacked at this viewer angle (knee is vertically over the foot, hip is over the knee). What we love here is that the foot profile (look at the black sole of the shoe) is parallel to the ground, it is hard to believe that it won’t strike as such. The medial and lateral aspects of the foot should strike flush and simultaneously. This is a neutral foot and is very likely without valgus or varus forefoot typing.  The tibia looks pristine and straight without any torsion, at least from this limited perspective. He also looks to be striding nicely, it seems to appear (albeit this is reaching from this head on view) that the foot will strike below the body mass, this may be because he subtly appears to be leaning forward, again hard to see on this view.

Middle runner, white shirt:  We see some problems here.  First of all, it appears (and again, this is reaching from a front on view) that this runner is striding out with the foot beyond the body mass and will likely heel strike, he also seems to be in more backward lean that the Blue Bib Man but again hard to tell on a frontal view. We also see that the foot is pitched in inversion (note the outward tip of his foot compared to the man in Blue) quite aggressively which will facilitate a strong excessive lateral heel and/or forefoot strike pattern.  You can also see that drawing a line through the length of the long bones (tibia and femur) that they are in alignment, they are even in alignment with the 90 degree perpendicular to the forefoot inverted angulation.  This clearly represents our classic “cross over gait” which was first brought to you and the internet by yours truly a few years ago (here on Youtube link).  It is easy to see that the projected foot landing will be on a virtual line and thus appear to run on a line or even cross the feet over the line indicating that this client is not stacking the foot, knee and hips vertically and thus challenging the gluteus medius and hip stability into the frontal plane (video link here). This client will be wasting energy and efficiency in the frontal plane (side to side movement) and challenging the core, risking knee tracking issues and excessive foot pronation forces beyond the safe and normal.  

Running on the readers right, green shirt #8:  There appears to be a strong stance phase leg collapse, the hip is lateral to the foot and the knee is perhaps on its way to medial from a vertical line from the foot. This can be, and often is, from the issues of cross over described in the middle runner above but it can also be simply found in someone who is striking with the foot/knee/hip joints stacked but does not have sufficient gluteus medius strength to keep the pelvis level on the horizon (thus drift laterally). When this happens the downward collapse of the opposite side pelvis is often, but not always, see as a valgus collapse at the knee since the femur is allowed to drift medially from insufficient strength, skill or endurance pairing of the gluteus medius/maximus pairing and the medial quadriceps. This client is  likely a cross over victim as well and this would give good reason to the aforementioned.  Again, this is all theoretical from a static picture but knowing these patterns like we do, we know these typical patterns of breakdown. This is also suspect because of the foot more positioned under the midline of the body instead of under the knee and hip vertically stacked and the obvious proximity of the knees to one another.  These clients often kick or brush the foot or shoe against the stance phase lower leg as they swing the foot through. 

Who is going to win this race ? One cannot tell. But if they were the same on all levels of endurance, training, VO2 max and equal on every parameter except what was mentioned above, well then our man in Blue, # 232 would be the most efficient and likely the least injured.

Photo from an Outside Magazine article. We Would reference it, and would be happy to do so, but we cannot find the net article anywhere now. Please send it our way if you happen across it !

Shawn and Ivo, The Gait Guys … .  followed in 51 countries and counting.

Lateral Forefoot loading. Why do we see so many runners laterally strike on the forefoot ?

This was from a reader on our Facebook PAGE. It was a great observation and a great topic to continue on our dialogue here on the blog and on our last 2 podcasts. We discussed this on the last podcast but we feel that there needs to be further clarification. (FB link) and (Pod link)

I think Runblogger or someone like that showed video clips of footstrike at an elite (or pro) level race…virtually all the elites (or pros) were first contacting the ground on the outside of their forefoot and rolling to the inside.

The Gait Guys response:

For some people, their anatomy “works” or can tolerate the forefoot contact better than others. Remember, the natural walking gait foot progression is heel, lateral forefoot, medial forefoot. The natural running foot strike is under greater debate as you all know if you have been following the materials here on our blog, facebook, twitter and podcasts. Our last two podcasts (#19 and #20) have gone into this in greater depth.

What you likely are seeing (the more lateral forefoot loading pattern) for these elite pro runners in the video you spoke of is normal clean biomechanics (for them), but for many people, you are not seeing that (by the way, we saw plenty of nice squared off forefoot loading responses as well in other pics and videos); rather you are seeing a coping compensation or just simply poor biomechanics that will lead them to injury. The question is when does it become excessive for a person via poor running form choice, forefoot varus foot type or internal tibial torsion etc ? Perhaps a more important question is whether the person has a flexible mid foot and fore foot that will allow the drop of the first metatarsal (medial tripod) to the ground to complete the foot tripod without having to over pronate through the midfoot or forefoot ? That is the key ! 

And these are valid concerns. Many of people have this, the elites you saw obviously have tolerant anatomy and tolerant biomechanics, for them. For them, they orchestrate all of the parts, perfect or imperfect, into a symphony. This is not as common as many of us would wish. Sure a more (not 100%) squared off forefoot strike is more perfect but not many people have perfect anatomy, in fact we are taught in med school that anatomic variance is the norm. And besides, what is perfect for any given person ?  Perfect and clean biomechanics for a given person could arguably be debated as that which enables them to be most efficient without injury long term. Meaning that which may not look pristine but that which acts as such over the long term.

Classically, a brief, controlled, and non-excessive lateral strike may be  normal, and with a normal and progressive transition to the medial side of the foot however, many people have a rigidity-flexibility issue between the forefoot and rearfoot (ie. rigid or uncompensated forefoot varus for example) and these people often become patients as runners.  This was what we were referring to in podcast #20 which spurred the readers inquiry.  These folks cannot adequately, safely and efficiently drop the medial tripod down (1st metatarsal head) without having to so much of the movement more grossly through the midfoot and excessive pronation.  Many people try to fix this with shoes or orthotics but it is a bit more complicated than that, although on the surface it seems logical and simple.

Obviously those pros that were viewed do not have these issues, hence why they are pros, meaning optimal mechanics, rarely injured for long combined and with gifted cardio fitness. To be a pro you need all of the pieces, just wanting to run fast or simply training hard is often just not enough to become elite. The pros are a small percent of the population. Many others are not in that category and thus remain at risk injury or become statistics. We have had plenty of elite runners in our offices who had the cardio and the will but not the anatomy and biomechanics to stay out of our offices long term (injury free) to compound the necessary training.  Many of these folks were converted to triathletes and have been able to compete at world class levels because we found a way for them to dampen the impact miles on tortured running anatomy. 

Sometimes a person’s will is not enough, sometimes you have to have the complete package. And that means competent anatomy and a tolerance system to aberrant biomechanics.  In our opinion our dialogue here is critical in runners, unfortunately there are some big gaps from the medical and biomechanics side in  many of the dialogues on the internet.  But that is were we find our niche, and it is where we are best positioned to help the masses. 

Join us weekly on our podcasts,  here on our blog, or our other social media sites. Join the Gait Guys brethren !
Shawn and Ivo

The Gait Guys

all material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved. Please ask before lifting our stuff!

Podcast #14: Forefoot Strike & Evolution

Podcast #14

Here is the live link:   http://thegaitguys.libsyn.com/webpage

iTunes will load it likely by the afternoon. Find it on iTunes through this link:

__________________________________________

Payloadz link for our DVD’s and efile downloads: http://store.payloadz.com/results/results.asp?m=80204

1- National Shoe Fit Program and Certification

2- email from a reader
from: Mikkel
I am currently treating a 15-year-old boy who as a child suffered from left sided equinovarus deformity and was operated. His left gastoc/soleus complex is underdeveloped, and he has impaired ankle rocker due to bony limitations anteriorly in the mortise joint causing anterior ankle pain when running and jumping. He has a distinct limp on the left leg due to decreased ROM and pain. He has an inverted calcaneus and forefoot valgus deformity on both feet (left more than right). He pronates heavily through the mid and forefoot to progress forward. Treatment thus far has had limited effect on the pain symptoms. I’ve manually mobilized the tibiotalar joint with posterior glides of the talus + given him exercises to strengthen the anterior compartment.
Would you consider orthotics? I’m thinking stability shoe with medial arch support maybe with a forefoot drop. Normally I would prefer stability and strength training and foot tripod exercises, but due to bone structure I have started to think, this isn’t enough. The pain limits him from running and playing soccer.
How would acupuncture fit into a treatment program in this case? which points could you recommend?
Any additional info and inspiration is welcomed.
kind regards - Mikkel

 http://en.wikipedia.org/wiki/Club_foot

2- Know your foot strike
http://sweatscience.runnersworld.com/2012/10/do-you-know-your-footstrike/

3- Caffeine: A PED ?

http://news.menshealth.com/chew-gum-before-races/2012/04/12/

Chew on this: Caffeinated gum can improve your athletic performance—if you start chewing it at the right moment, finds a new study from Kent State University.

 http://www.energyfiend.com/the-caffeine-database

4- DISCLAIMER:We are not your doctors so anything you hear here should not be taken as medical advice. For that you need to visit YOUR doctors and ask them the questions. We have not examined you, we do not know you, we know very little about your medical status. So, do not hold us responsible for taking our advice when we have just told you not to !  Again, we are NOT your doctors !

5: more lectures available  on www.onlineCE.com   Go there and look up our lectures

6- EMAIL FROM A Blog follower: 
Why do some muscles go weak and others not ?
First lets talk about tightness vs shortness. We are getting exhausted from always hearing about tight piriformis, psoas hip flexors and IT Bands.
Now, lets define 2 types of weakness…….
a- physiologic /  disuse
b- neurlogic inhibition

7- Our dvd’s and efile downloads
Are all on payloadz. Link is in the show notes.
Link: http://store.payloadz.com/results/results.asp?m=80204

8 - Creatine:
 http://www.foxnews.com/health/2012/10/11/creatine-myths-and-facts/

9- The one perfect test for a runner ?
 http://news.menshealth.com/find-your-perfect-running-pace/2012/10/14/
The Talk Test
Researchers for the study put 18 well trained cyclists through two identical fitness tests. In one test they measured the above thresholds with traditional medical equipment. In the second test they asked cyclists to say a paragraph while exercising. What they found was that the cyclists’ “out-of-breathness” matched the thresholds. “From our standpoint, the TT is very useful and almost ‘idiot-proof,’” Foster says.

Gait, Running and Sound. Are you listening to your body ?

A few months ago we tried something new.  We tested your gait auditory skills while listening to a video of a runner on a treadmill. We queued you to listen to the foot falls listening for the one foot to slap or impact harder than the other at foot strike. Most of you got it right, we  got plenty of positive feedback on that piece. Here is that piece (link).

This is something we do during the initial evaluation for each and every patient that comes to see us, no matter what their issue. We ask them to walk. We ask them do they notice anything. The answer is almost always, “no”.  This is because they are accustomed to their walking habit.  The first queue we notice much of the time is that there is either a bilateral heavy heel strike (because heel strike is normal in walking) or it is  heavier on one side. We ask them to hear and feel that heavier strike once we point it out to them. Not only can they feel it, they can hear it. It is something they have rarely been aware of until that moment.  We then do the same for forefoot loading. If the anterior compartment is a little weaker on one side or if they departed abruptly off the opposite leg for some reason (decreased hip extension, tight calf, loss of ankle rocker etc), a heavier forefoot loading response will be felt and heard as well (opposite side of the mentioned issues).  These are great initial gait queues that anyone can use to gain diagnostic information.  It also draws the client into greater body awareness of their habitual patterns of movement. We then draw out the numbers and forces for them so they understand what several thousand cycles of this event can cause into their body and their clinical problems they are presenting with.  This is typically a new skill they will develop and always be aware of and be able to report to you as they progress through their care with you.  Sound and feeling are key biofeedback tools.

Just remember, they are feeling and hearing what they are doing, not what is wrong ! It is your job to take this information and figure out the “Why” it is happening, and the “how” to fix it.  This is the hard part.

Is Barefoot more economical ?

Researchers at England’s Northumbria University analyzed the gait and oxygen uptake of 18 recreational and elite runners performing a series running tasks both barefoot and shod.

Dr. Michael Wilkinson, lead researcher and avid barefoot runner determined the following in their study:

- a significant saving in energy from taking off running shoes

- mechanical differences in the foot strike patterns (shod runners did more heel strike, unshod were more midfoot striking)

- there were immediate foot strike changes in previously shod  runners who suddenly changed to unshod foot strike

- there is less oxygen use during barefoot running compared to running shod at the same speed. Hence improved running economy.

Characteristically, skilled unshod runners have a distinctive running gait utilizing:

- mid-foot landing

- shorter stride lengths

- faster stride rates

- reduced ground contact time

- lower impact force and loading rates which dampens injury inducing forces

- reduced oxygen utilization. The 6% improvement in economy was the same as that previously reported after a nine-week training program for shoe-wearing runners, who also enjoyed a 3% improvement in running performance.

Click on the link above for the Science article.

More research on Forefoot Running: Forefoot Varus and the toe extensor muscles.

Lately we have all seen much in the news about the forefoot strike loading in runners and many of the proposals and rebuttals regarding injury rates.  Our dialogue less than 2 weeks ago on some of Lieberman’s recent comments (our blog article “Dear Dr. Lieberman”, click here) seem to be ringing true again. Here are just two more insightful and important studies when it comes to looking at some of the proposed ideas and causes of forefoot varus. Naturally, a thinking mind would wonder if some of these weaknesses in anterior and posterior tibialis muscles as well as extensor toe musculature, as proposed in just these 2 articles, are causal to the forefoot injuries that seem inevitable as Lieberman seems to suggest (again, see our blog post). Naturally, weaknesses and poor motor patterns of some or all of these muscles is going to create and insufficient and possibly inefficient and pathologic forefoot loads because of the forefoot varus foot type these muscular imbalances can functionally produce.  We have been pounding sand on this issue for years but still no one listens.  The medial research, as evidenced here is supportive of our theories and everyday clinical findings.

To summarize, ONCE AGAIN, not everyone is suited or possibly ready for forefoot load/contact/strike running.  And if you have injury or problems in doing so, don’t blame your minimalist shoe……. it is either a foot type that needs functional repair or a foot type that is fixed an must opt for midfoot strike.

There is SO MUCH MORE to this game than just strap on some minimalist shoes and start forefoot loading your way on your next run.  Buyer beware !

Shawn and Ivo…….. the gait guys……..two guys who are “Gandhi’d” regularly. 

“First they ignore you, then they laugh at you, then they fight you, then you win.”

- Mahatma Gandhi

______________________________________________

http://www.ncbi.nlm.nih.gov/pubmed/20307453

Foot (Edinb). 2009 Jun;19(2):69-74. Epub 2008 Dec 31.

Foot varus in stroke patients: muscular activity of extensor digitorum longus during the swing phase of gait.

Reynard F, Dériaz O, Bergeau J.

Clinique romande de réadaptation, SUVA Care, Av. Gd-Champsec 90, Sion, Switzerland. fabienne.reynard@crr-suva.ch

Abstract

CONCLUSIONS: The activity of extensor digitorum longus muscle during the swing phase of gait is important to balance the foot in the frontal plane. The activation of that muscle should be included in rehabilitation programs.

_______________

http://www.ncbi.nlm.nih.gov/pubmed/16882899

J Bone Joint Surg Am. 2006 Aug;88(8):1764-8.

The contributions of anterior and posterior tibialis dysfunction to varus foot deformity in patients with cerebral palsy.

Michlitsch MG, Rethlefsen SA, Kay RM.

Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Abstract

RESULTS: The muscular contributor to varus deformity was the anterior tibialis in thirty feet, the posterior tibialis in twenty-nine feet, both the anterior tibialis and the posterior tibialis in twenty-seven feet, and another contributor in two feet. Seventy feet had varus deformity during both stance phase and swing phase. Of these seventy feet, twenty-five exhibited dysfunction of the anterior tibialis, twenty exhibited dysfunction of the posterior tibialis, and twenty-three exhibited dysfunction of both muscles. Therefore, the timing of varus was not predictive of the contributing muscle or muscles.

CONCLUSIONS: The current study demonstrated a higher prevalence of anterior tibialis dysfunction, both alone and in combination with posterior tibialis dysfunction, as a contributor to pes varus in patients with pes varus and cerebral palsy than had been reported previously. Dynamic electromyography provides clinically useful information for the assessment of such patients.

Biomechanist challenges idea that forefoot strike pattern reduces runners’ injury rate

Cites lack of conclusive evidence

By Jordana Bieze Foster

http://www.lowerextremityreview.com/issues/may/biomechanist-challenges-idea-that-forefoot-strike-pattern-reduces-runners-injury-rate

“UMass researchers have demonstrated that, although forefoot strikers do not experience a vertical ground reaction force “impact peak,” they do experience impacts during running, albeit at lower frequencies than rearfoot strikers. This research, presented last summer at the American College of Sports Medicine meeting in Denver, suggests that because those lower frequencies are attenuated by muscle tissues, while higher frequencies are attenuated by bone, forefoot strikers may actually face a higher risk of muscle injury than rearfoot strikers.

Claims that loading rate is significantly lower in forefoot strikers than rearfoot strikers also may not be entirely accurate, Hamill said. He cited research from Iowa State University, scheduled to be presented in August at the annual meeting of the American Society of Biomechanics, suggesting that when natural forefoot strikers switch to a rearfoot strike pattern, their loading rate actually decreases.

Research, most notably the oft-cited Harvard study published in Nature in 2010, have found higher magnitudes of ground reaction force in rearfoot strikers than in forefoot strikers. However, Hamill noted, the heel is a much less delicate structure than the forefoot and therefore may be better suited to absorb higher forces.”

Dear Dr. Lieberman : Some vital facts on forefoot running are not being discussed.

A clay pot sitting in the sun will always be a clay pot. It has to go through the white heat of the furnace to become porcelain. -Mildred Wite Stouven.

Today’s blog article is likely to bring flames to our feet, but we are not afraid of the heat.  At the very least we will settle for the heat this article may bring so that our work can get the recognition we feel it deserves and so the truth can be brought to light for the good of all mankind.

“Forefoot strike causes less impact force on the body,” says co-author Daniel Lieberman, Ph.D., a professor of human evolutionary biology at Harvard and scribe of a popular barefoot running manifesto in 2010. “People forget that running is a skill, and if you don’t run properly, you’ll get injured.”

Amen to that; we have been saying that for years before this all became popular talk …

We recently read this article in Men’s Health, yet another one supportive of minimalism running. And once again some of the most important facts are being left out. We just cannot sit here and watch the inaccuracies of minimalism and forefoot running continue to root themselves without policing. So, let us once again set foot into the raging battle.

According to the article (LINK) Sturtz says, “Landing on your forefoot, the way humans have run for thousands of years, produces almost zero impact on joints and bones, according to Lieberman’s 2010 study. But 75 percent of us now land heel first—cushioned running shoes made that possible (and comfortable)—which slams up to 3 times the body’s weight in impact force on your knees and legs.”

Our question is, “ Why is no one paying attention to foot types?” In every lecture we do, to clinicians or everyday runners, about “forefoot type” variants (valgus and varus to be precise) we comment that this is something that should be talked about during Running Form Clinics where forefoot landing is promoted. 

“… forefoot running is not the whole answer to injury prevention, just a component”, says Lieberman. “This is not a simple solution to a complex problem—you can’t change one thing and have everything be fine. You can still forefoot strike with poor form.”

And we would add to that quote that “you can get a resultant compensatory running form if you forefoot strike with a forefoot varus or forefoot valgus”. Not everyone has that pristine neutral forefoot bipod architecture that the internet articles are assuming exists in everyone, and thus there is no way that everyone has fully competent pristine forefoot biomechanics that will not eventually trigger injury. This is a fact, not our opinion. 

Dr Lieberman then goes on to say: “ If it ain’t broke, don’t fix it.”

We respectfully disagree. We do this on a daily basis (as do many of you).  If the check engine light on your dashboard is flashing at you every day for a week you would be remiss not to consider the repercussions.  “The car ain’t broken… YET” is a more precise comment. You would be wise not to go on a long distance car trip knowing this fact.  Translating this to forefoot load/strike running, ignoring a potential injury because of flawed forefoot anatomy and biomechanics is a recipe for injury.  Just because it isn’t broken YET doesn’t mean ignoring the issues will make them go away or make you immune. A few hundred or thousand miles on a forefoot variant can be an issue clinically and injury wise.

Just because the body isn’t broken YET doesn’t mean it cannot work better and prevent a problem down the road. Dr Lieberman then goes on to quote, “Remember, almost every distance runner gets injured".  Why is he batting from both sides of the plate here? If “Landing on your forefoot, the way humans have run for thousands of years, produces almost zero impact on joints and bones”, according to Lieberman’s 2010 study then why would he go on to say “Almost every distance runner gets injured”?  There has to be a reason !  Forefoot running is either the answer or it isn’t.  Our valid and ignored proposal above, and our repeated comments throughout our 500+ blog posts on this topic on foot types, is a valid answer to his injury assumption.  It is quite possible that these inevitable injuries occur because people take the advice of “if it ain’t broken, don’t fix it”.  It is also most likely that ignorance of the deeper facts is bliss for most people. .Had they spent the time to find out about their forefoot type and learn to modify subtle biomechanical flaws of forefoot loading strategies of their foot type, perhaps we wouldn’t hear “Remember, almost every distance runner gets injured".   Maybe that is why you SHOULD look into fixing things that are not YET broken and at the very least learn about foot types, particularly which one you have and the potential risks it exposes you to. Our blog here has done this in depth over the last year. 

“An ounce of prevention is worth a pound of cure” -Benjamin Franklin.  Anyone is medicine knows this is true (or should).

We prefer midfoot strike when possible, for many reasons but mainly because it takes into account a tripod contact loading response.  A tripod load is more stable than a rear foot unipod load and more stable than a forefoot bipod load, particularly when there are rear or forefoot variants (rearfoot valgus, rearfoot varus, forefoot valgus, forefoot varus) from the pristine normal that is always assumed in many articles.   A tripod loading response (midfoot strike) can dampen some of the mechanical flaws of either heel or forefoot strike patterns and of the foot type variants that are the norm, not the exception.

We see this stuff everyday in our practices. We are the guys that get the injury cases that are driven by the inaccuracies, or better put “overlooked facts”, of articles on the internet. To be fair, we have also written a fair number of articles for magazines and we know how they can get so chopped down that truth, honesty and full disclosure can be lost for the sake of publication limitations. None the less, our strong opinion, this article could have been far more complete had it talked about the issues we have brought to light here.  We love and respect the work of Lieberman and his colleagues.  He and his colleagues have done a huge service to the runners of the world and we have learned from them. Learning is a lifelong journey for us all and we just think that there is a huge information gap that is being missed and we feel it is time that the runners of the world hear the whole truth. We believe our work is filling that gap.

“First they ignore you, then they laugh at you, then they fight you, then you win.”

- Mahatma Gandhi

For the past year, we have been feeling a bit like Gandhi must have felt. We realize that some of our work is complicated, difficult to understand, and tough to digest. We know we are laughed at by some who prefer to seek the safety of ignorance. And yes, despite 600 blog posts on these very topics (yes, we have one of the most informative blogs and YouTube Channels on the web for runners and athletes looking for answers) we feel somewhat ignored. None the less, we continue to stick our necks out far and long to set the record straight to make sure that everyone knows the facts they deserve to know.   We hope you will forward, link, Facebook and tweet the hell out of our blog post today, for the good of every runner and athlete you know and for the whole of mankind.  We are in this for the long haul. Stick and stones … .       - Drs. Shawn and Ivo …  The Gait Guys

here is the article that spurred our post:

http://news.menshealth.com/fix-your-running-form/2012/01/24/

The Risks for Forefoot Strike running. YOU NEED TO READ THIS ! YES, YOU !

OK, we are going to go on a rant here…… it is time.

We have been talking about problems of forefoot strike for some time now. We like a midfoot strike, and we have research-based, well founded logic to our opinion.  A Forefoot strike reduces the amount of pronation possible for shock absorption because  when the foot is plantarflexed it is in a supinated state which is reserved for a rigid propulsive mechanism.  At impact some degree of pronation is necessary otherwise force attenuation must occur elsewhere in the kinetic chain otherwise it creates bone, joint or soft tissue pathology/injury somewhere in the chain.  However, one of the major issues we have been pounding our fists on the table about, for years, are forefoot orientation anomalies.  A significant portion of the population have forefoot types of varus or valgus, some flexible and some more rigid, some compensated and some uncompenated (yes, this is difficult stuff……but if you are going to make orthotics or if you are going to be a runner or sell or make shoes or coach or even speak about running form styles…… you had better know this stuff or we will call you out on it). 

No one is talking about this stuff except The Gait Guys. 

Is this because no one knows about it ? Maybe.

It is because those in the running fields do not understand it well ? Likely. 

It is because it creates fear and anxiety about selling shoes ? Probably.

Is it because it complicates shoe fabrication? Likely. 

Does that make it right to just ignore it all together ? No ! 

With a forefoot strike into one of these “pathologic” forefoot types the anatomical variance is accentuated.  In this scenario, a varus foot type that lands and subsequently has not choice but to drive hyperpronation strain not only suffers from the increased pronatory collapse but they are unable to acquire a subsequent rigid toe off which in itself can drive further pathology.  And a valgus forefoot strike is even more rigid than a neutral forefoot strike impact and they are also at risk for inversion strain on the lateral foot.  A midfoot strike can reduce some of these consequences by setting the foot up for a preparatory transition. We know this, we see this everyday, it is what we do. These runners need to be categorized and educated as to why their injury is present or chronically persists, and why we insist a program to reteach a midfoot strike. 

As always, if the doctor knows what anatomy presents itself with the client, and adequately educates the athlete……..then a good relationship and outcome will ensue. Additionally, a change in shoe is not  uncommon when their strike mechanics change.


Here is what spurred our soapbox rant today…….. thanks Lower Extremity Review for bringing the June ASCM to light early !!!
_________________________________________________________________________________

from LER, Link is above:

“The frequency content of vertical ground reaction forces generated during running differ among forefoot strikers and rearfoot strikers, and this may have implications for injury risk, according to findings from the University of Massachusetts presented in June at the ACSM meeting.

Researchers assessed frequency amplitude and power in 10 natural rearfoot strikers and 10 natural forefoot strikers as they ran across a force platform.

At frequencies above 9 Hz, rearfoot strikers’ amplitude exceeded that of forefoot strikers. Similarly, above 22 Hz, power was significantly greater in rearfoot strikers. This is consistent with previous reports that only rearfoot strikers have an impact peak, which occurs between 10 Hz and 20 Hz.

But between 4 Hz and 7 Hz, amplitudes were higher in forefoot strikers. And for frequencies less than 6 Hz and between 9 Hz and 11 Hz, power was greater in forefoot strikers.

Because the body attenuates shock differently at different frequencies, the findings could suggest that even forefoot strikers (including most barefoot runners) may be at risk for certain injuries despite lacking an impact peak.”