Arm swing, let the CNS drive the show

For those arm swing/pulsers/ COM and head over foot folks consider some more research below.
Let the CNS drive the show, it is what it is there for . . . The leg motor patterns are dominant, the arms are passive and "shape" and influence the leg swing as a balance and ballast effect. As we discuss in an upcoming podcast, to cross the arms in a pumping motion across the midline of the body means one has to have compromised scapular mechanics (mostly protraction) to afford that much humeral adduction. This means we are forcing thoracic rotation as well. This means we are reversing what we know is more true, that "arm motion is driven passively by rotation of the thorax (Pontzer et al., 2009), an idea which is supported by shoulder muscle EMG data" (and not thoracic rotation by arm swing). Why would we try to create more unnatural axial spin through the spine when we are actually trying to move forward in the sagittal plane? Why would we try to force more rotation through the spine when the function of the thoracopelvic canister (ie. the core) is to stabilize rotational /angluar momentum? Hmmmm, things to ponder.

"Previous modelling studies have clearly shown that motion of the arms effectively counterbalances the angular momentum of the lower extremities during running (Hamner & Delp, 2013; Hamner et al., 2010). It has further been suggested that arm motion is driven passively by rotation of the thorax (Pontzer et al., 2009), an idea which is supported by shoulder muscle EMG data, consistent with the shoulders as spring-like linkages (Ballesteros, Buchthal, & Rosenfalck, 1965). Our data are con- sistent with this idea, showing motion of the thorax to be in the opposite direction to that of the swinging leg. Pontzer et al. (2009) also suggested that motion of the thorax is driven passively by motion of the pelvis. However, our data shows that the thorax reaches its peak angular velocity earlier than the pelvis, indicating that thorax motion is not completely passively driven by pelvic movements."

-S.J. Preece et al. / Human Movement Science 45 (2016) 110–118

Top end heel raises. The top end might matter.

Screen Shot 2019-04-19 at 6.34.09 PM.png

Thought experiment . . .
If top end posterior compartment (loosely, the calf complex) strength is lacking, then heel rise may not be optimized to transfer body mass forward sufficiently and effectively.
This lack of forward progression, fails to move the body mass sufficiently forward enough to reduce the external moment arms and optimize the internal moment arms to take maximal advantage of the calf complex (I am talking about moment arms between the grounded 1st MTP joint and ankle mortise & ankle mortise and achilles tendon).
These are rough thoughts today gang, letting you inside our heads and how we juggle multiple parameters when we are struggling to solve a client's problems.

In the lower heel rise photo, The body mass does not progress forward enough over the grounded first MTP joint at the big toe (during gait, the heel doesn’t just rise up, the axis of the ankle joint moves both up and forward).
In this case, the foot may not be fully rigid in a supinated position to benefit from joint closed-packed positions. Thus, the foot may be more pliable and one might suppose that if not adequately supinated, they are inadequately still too much relatively pronated. This might put more load into the tibialis posterior and other soft tissue mechanical loading scenarios that are less optimally suited to do this job. Over time, might this lead to pathology? Likely.
Thus, when running on a weaker posterior mechanism (often found unilaterally) the higher up posterior chains might be overburdened, the tendon loads and loading response of the achilles, tibialis posterior, and long flexors will be most likely altered, likely negatively, the naturally occurring foot locking mechanisms might be less optimal than desired, subtalar and forefoot loading might be premature (ie. sesamoid malpositioning for one, as a simple example), etc etc. Loading a foot(the mid and forefoot) into heel rise that is still somewhat pronated creates a different moment arm around the subtalar joint axis (that moves through the 1st metatarsal), than a foot that is more supinated.

Now, put these ideas into the 2 photos from yesterday where one might be loading the forefoot laterally or more medially, and now make the top end strength more in one of those scenarios. Is it any wonder why so many struggle with posteiror mechanism tendonopathies ? There are so many parameters to consider and examine. And, if not examined in great detail, the key lacking parameter can be missed.
Hence, just forcing calf strength loading is too simple a solution, there is a needle in that haystack that upset the client's apple cart, it is the job of the clinician to find it and remedy it.

Today, looking into the research and finding some interesting things that are spurring some thoughts.

Shawn Allen, one of the gait guys

Habituating a gait correction

We tell our patients all the time that the key to acquiring the gait correctives is the number of times a day they show the nervous system the corrective gait patterns. It is not about 2-3 solid episodes of homework a day, rather, it is an hourly 2-3 minute focused episode driving nothing be the cleaned up motor skill we are trying to neurologically "rewrite".
We have 3 tiers in my office, Gold, Silver and Bronze.
Gold medal homework= 2-3 minutes every hour.
Silver medal homework= 2-3 min every 2 hours
Bronze medal homework= 2-3" every 3 hours (that is still a medal, because it is still 6x a day)

We start with one corrective in their gait and homework to set that pattern up. Then next visit we up the difficultly on that skill/pattern, and introduce another new one that is part of the overall gait correction was want to see. Thus, they are juggling 2 balls, one that is more familiar but a little harder, and now a new one that is at the basic level. The next visit, we add a 3rd ball, upping the demands on the other 2.
Rinse and repeat.
This goes for walking and running gait problems.

IF they want this pattern to be come more habitual faster, one has to go for gold, or gold++.

-Shawn Allen, the other gait guy
#gait, #gaitproblems, #gaitcorrections, #gaitretraining, #gaitanalysis, #thegaitguys, #habits, #runningform

"The findings indicate that the amount of practice in the criterion task is more critical than the difficulty and variations of task practice when learning new gait patterns during treadmill walking."

https://www.ncbi.nlm.nih.gov/pubmed/30905405

Pigeon holed into a particular running form. Some thoughts.

We should not pigeon hole everyone into one of the major (often discussed) "running forms". Every person's running form has some unique parameters that work for them (and perhaps some components that do not work for them and lead to injury), and asking their body to do something else that you "deem" better for them because it looks right/better can at times lead to new issues or complications in resolving their complaints. Work with their system, their anatomy. Help them correct mechanical flaws related to their problems/complaints/injuries. Do not try to get everyone into one of the classically pristine and magazine cover running forms. As Allan on our FB page said, "gait correction requires work". And may we say this . . . . that prescribing corrective exercises does not mean they will spill over into their gait with positive changes. There must be teachable time that is hands on to help them blend over the corrective work into new gait patterns. This is a skill that takes a long time to learn and figure out, and each client is different and each client requires different cues and different exercises to tap into the desirable cues for them. This is why internet/youtube corrective exercise prescribed homework (ie. do this exercise to correct your iliotibial band syndrome) often does not work and sometimes creates new problems down the road. Why? . . . because there are holes missing when there is not a hands on exam to ensure the corrective work is the right work, and, just as importantly, it takes time and skill to show, demo, and translate how and why the homework will take over into a new gait pattern. Translation, corrective exercises do not guarantee a new gait pattern or new running form. There are so many bad examples we could use, "just going to the mechanic does not guarantee they will fix your car", "changing your tires does not necessarily make you a safer driver", "watching some youtube videos on learning to drive does not mean you actually know how to sit in a car and drive".

Adaptations and compensations.

Screen Shot 2018-10-25 at 10.54.01 AM.png

. . . the entire system has to adapt to that deficiency. That means compensation. Now, does adding strength to that asymmetry (compensation) have a consequence. Most likely. Will it lead to injury? That is the question.

We are going to keep pounding sand on this one because we believe this is important.
All too often people are working out and strengthening their systems, and that is good. But, if they are strengthening a system that is asymmetric or strengthening a faulty pattern (clearly, as in too much arch collapse) they are likely overburdening the hierarchical system and a component of the chain of that system.
Now, many are going to argue, and we know who those folks are, they are going to argue that if the movement is not painful, if the posturing of the load is not painful, then it is not a problem. Sure, and that is easy to say, but there is no proof they are right either. And, we are not saying we are stonewalled right either, but we are trying to be logical with what we know and what some of the research says (yes, that fits our bias). But our eyes are open and we hear the arguments from the other side, but those arguments come from a crystal ball in our opinion. Truthfully, no one has that crystal ball and can see into the future to see if one side of this argument has any more "legs" to it.
However, we know that . . .

"Human movement is initiated, controlled and executed in a hierarchical system including the nervous system, muscle and tendon. If a component in the loop loses its integrity, the entire system has to adapt to that deficiency. Achilles tendon, when degenerated, exhibits lower stiffness. This local mechanical deficit may be compensated for by an alteration of motor commands from the CNS. These modulations in motor commands from the CNS may lead to altered activation of the agonist, synergist and antagonist muscles."- Chang and Kulig

So, when we see a pattern of loading that is aberrant, and especially when it is most likely playing into a client's painful presentation, it is an easier sell on the thought-arguments above. We know that the entire system has to adapt to deficiencies. It is how we are synergistically built. We have redundancies build into us that protect us. Compensation is part of the redundancy. So, does adding strength to that asymmetry (compensation) have a consequence? Most likely it does, in our opinion. Why allow an area to undergo more loading than we know it should, (ie. valgus knee loading) even if it is non-painful to a client ? Will it lead to eventual injury or pain? That is the question. But we have picked our side of the story, for now, until proven otherwise, and we work from that side of the line. For now.

"yet" is a powerful looming word.
When adding strength takes someones pain away, it doesn't mean you fixed them. It likely means you helped them adapt and protect and better negotiate the loads. However, it also does not mean that your instruction did not build a layer of initial protective strength that will not have a cost further down the road because it wasn't the right medicine for the problem.
When your cars alignment is off, and it is pulling the car to the right towards the ditch, pulling harder to the left on the steering wheel keeps the alignment aberrancy, and the ditch at bay. But nothing was fixed. You adapted and compensated. The problem is still sitting there. And you will get used to the adapted and compensated pattern of steering wheel pull in time. Until the next thing occurs. Maybe the tire will start to chirp in time, the treads silently wear unevenly, and maybe it will be your left shoulder that chirps at you, and not the car.

The squeaky wheel may get the grease, but the misaligned tire is ignored.

Shawn and Ivo, the gait guys

J Physiol. 2015 Aug 1; 593(Pt 15): 3373–3387.
Published online 2015 Jun 30. doi: 10.1113/JP270220
The neuromechanical adaptations to Achilles tendinosis
Yu-Jen Chang and Kornelia Kulig

#gait, #thegaitguys, #gaitcompensations, #gaitproblems, #compensations, #running, #walking, #genuvalgus, #pronation, #CNS, #synergist

Where do you start?

Know any coaches to say these kinds of things?
"straighten your head, pull that right arm in and pull that right knee out, and stop crossing over in your gait, widen your step width"

Yesterday I again discussed arm swing and perhaps why not to coach it out if you merely do not like how it looks in your client. I also mentioned that head tilt, torso/trunk deviations are likely compensations, but it can go both ways. One has to solve for the problem, and not coach the changes we wish to see into the client. Where do you start with a client? Their head tilt? the Right arm abduction? The medially collapsed knee? The abducting swing leg knee ? Where do you start? If you do not examine your client, understand the principles of cause and effect of aberrant human mechanics, you just might recommend an orthotic, a stability shoe, and coach "straighten your head, pull that right arm in and pull that right knee out, and stop crossing over in your gait, widen your step width". That is fine if that is what you choose to do, but i suspect i will also see you at the county fair playing "Whack a Mole". It is the same game. You'll always lose your money, and realize that game never ends, not until you solve for "X" (the cause). -Dr. Allen


Can running/loading form changes last and translate from treadmill into the outdoor world ?

Research is here to inform us, give us concepts to guide protocols, clinical decision making, to make better choices for the patient right in front of us with their own unique set of variables (environment, choices, age, skills, strength, endurance, sport, history of injuries etc).

This is a study that makes us raise our eyebrows.
We sense that, as any reasonable clinician would, that a 8-session training protocol is not enough. You cannot win over old ingrained loading patterns that are well rooted in a mere 8 sessions.
The message we chose to take is that if changes were possible, if adaptations are possible, then time is the variable and patience must prevail. It can take months to make a new pattern unconsciously competent. It takes time.

The authors of this study said , "SIGNIFICANCE: Our findings indicated that a newly learned gait pattern may not fully translate to running outside of the laboratory environment."
We say, "it may not fully translate in 8 training sessions. Keep at it."

Can runners maintain a newly learned gait pattern outside a laboratory environment following gait retraining?Janet H Zhang, Zoe Y S Chan, Ivan P H Au, Winko W An, Roy T H Cheung

https://www.readbyqxmd.com/read/30658313/can-runners-maintain-a-newly-learned-gait-pattern-outside-a-laboratory-environment-following-gait-retraining

Step width and peak knee forces.

Forget older adults, this is for everyone. If you have a step width that affords knee over foot, hip over knee, and you load those stacked joints, there will be less peak adduction and abduction loads at the knees . . . . and less risk for frontal plane drift of the hip-pelvis, improved control of limb rotation during loading, and reduced risks for over pronation at the foot-ankle complex. These are anti-cross over gait principles.
And, this is obviously not just a stair descent or ascent issue, these are normal fundamental gait (walk and run) principles that just make good common sense !

Knee. 2014 Aug;21(4):821-6. doi: 10.1016/j.knee.2014.03.006. Epub 2014 Apr 3.

Effects of increased step width on frontal plane knee biomechanics in healthy older adults during stair descent.

Paquette MR1, Zhang S2, Milner CE3, Fairbrother JT2, Reinbolt JA4.

Changing step width alters lower extremity biomechanics during running.

Screen Shot 2018-11-11 at 9.45.08 AM.png

The Cross over gait. We have been talking about this for years, our theories have been supported by the available research and years of patient care.
Here is another study that goes with our ideas, which gives it deeper clinical relevance.

Changing step width alters lower extremity biomechanics during running. Brindle RA1, Milner CE, Zhang S, Fitzhugh EC. Gait Posture. 2014

"Step width is a spatiotemporal parameter that may influence lower extremity biomechanics at the hip and knee joint. Peak hip adduction and rearfoot eversion angles decreased as step width increased from narrow to wide."
Step width influences lower extremity biomechanics in healthy runners. "When step width increased from narrow to wide, peak values of frontal plane variables decreased.

The Fredericson paper (Hip Abductor weakness in distance runners with iliotibial band syndrome) is also supportive. That paper found that increasing step width reduced the strain on the iliotibial band during running. Greater ITB strain and strain rate were found in the narrower step width condition.

We have said it, and will say it again, because someone will post here, "maybe, but all the pros when you watch then and see photos of them, they all have a very narrow step width, basically qualifying for what you guys call a Cross Over gait. So how can you make such bold statements?"
Our response would be, "every attempt at squeezing out more economy in ones gait, walking that fine line of riskier gait mechanics, is a game of playing ECONOMY vs. LIABILITY. And if you have built enough durability and conditioning into your system that you can nudge right up to that fence of RISK, you can play with those liabilities and squeeze out the economy of your gait (like the pros) with that narrower step width. Just be aware and careful, that when you are losing control, as the runs lengthen, that the LIABILITIES are increasing and thus so is the RISK for injury. Just remember, you are likely not a pro, and have not spend the time building a safe zone of durability on your system to endure narrow step width for 26 miles.

A good runner will train the frontal and rotational planes regularly as they engage in their sagittal sport of running. So that as fatigue sets in and the step width begins to narrow, they have some durability of the lower limb to sustain the risky mechanics of the narrow step width. There is a limit for everyone, when the well goes dry.

Improper loading of the big toe/hallux ?

Screen Shot 2018-11-11 at 9.13.24 AM.png

The callus pattern indicates were friction or pressure loading is present. When the loading is too fast or aggressive, we get a blister, but when the loads a low and over time, a callus develops. It can be from rubbing up against a shoe but it can also be from loading responses through the skin.

In this case, we see the callus under the proximal hallux and slightly medially. This can indicate that the short flexor of the hallux (FHB) may be more dominant. And we see clues here, the tip of the hallux is curved up, though this is not a great photo to represent this.
When the short flexor is more dominant, the long extensor is typically more dominant, as we see here by the big toe curling up.
When these are more dominant, the long flexor and short extensor are subservient. This presents us with some tendency toward a hammer toe response, and maybe a true hammer toe over time.
Callus patterns are clues, not answers, but they are breadcrumbs as to how your client is loading, where they are loading, how aggressive the loading is and the motor patterns they could be deploying.
Look for them, and let your examination, confirm or deny your suspicions.

The “Dodgy Foot”, a UK runner’s dilemma.

We get “help me” emails from all over the world on a regular basis. Recently we received this photo from a runner in Oxford, UK, The runner was frustrated, explaining a “dodgy foot”. We like the word.

We can guarantee you that the solution here to this runner’s form issue is not wholly at the foot which appears “in toed” and slanted and appears ready to kick the back of the right heel, not to mention the knees that are about to brush together. Thus, merely working on their foot strike would be so remedial and corrupt that it would a crime.

Screen Shot 2018-11-11 at 9.03.59 AM.png

Ivo and I do not take on cases via the internet because we cannot give all the information because we cannot examine the client, many do offer such services but people are not being given the whole story and we pledged long ago not to be part of the problem. Anyone who recommends exercises from things they see on a video gait analysis are basically doing the same disservice in our opinion. But sometimes, as in this case, their inquiry is simple, there is a photo or video and it allows us to highlight an important component of an individuals gait which can lead them on a road to appropriate discovery. This is one of those cases. I will not be presenting a solution, because I do not have the examination information I need, but I will propose a solid thought process that further investigation may afford progress towards resolution.

This is a non-pathologic cross over gait in my mind until proven otherwise, there may be other sources, causes and components, but when it quacks like a duck you’d be silly not to check for webbed feet. This runner even confirmed upon questioning that the left foot scuffs the inside of the right ankle/shin often, both sides scuff in fact but more left shoe on right shin. No Einsteinian epiphany there. After all, the thigh adduction on the left is what gives the foot posturing appearance, but it is likely driven by poor stabilization on the stance side leg (the right):

This means a narrow swing through (adducting) left limb.
This means stance and swing phase gluteus medius communication problems.
This means swing leg foot targeting problems.
This often suggests right, but sometimes both right and left, frontal plane pelvis sway problems which means pelvis control is challenged which means core lumbar stability control is challenged.
This means adaptive arm swing changes from the clean norm.
This does NOT mean this runner has pain, or pain yet, or maybe never will have pain but there are many determinants of that which I will discuss below.

But, make no mistake, this is flawed gait mechanics. The left swing leg is clearly targeting a more medial placement, meaning limb adduction (active or passive or both is to be determined) and this is a product of the cross over gait (unfamiliar with the cross over gait ? SEARCH our blog for the term, you will need a few hours of free time to get through it all). Some would call the cross over gait a lazy gait, but I would rather term it an efficient gait taken too far that it has now become a liability, a liability in which they can no longer stabilize frontal plane sway/drift. A wider gait on the other hand, as in most sprinters, is less efficient but may procure more power and the wider base is more stable affording less frontal plane drift. Just go walk around your home and move from a very narrow line walking gait to a wide gait and you will feel a more powerful engagement of the glutes. Mind you, this is not a fix for cross over gaits, gosh, if it was only that simple !

This runner must investigate whether there is right frontal plane drift, and if it is in fact occurring, find the source of the drift. It can come from many places on either limb. (This client says they are scuffing both inside ankles, which is not atypical and so we likely have drift on both right and left). We have discussed many of them here in various places on the blog over the years. Now as for “Why” the foot looks in toed, well that can also come from many places. Quite simply the adducted limb once it leaves toe off can look like this. But, perhaps it is also a product of insufficient external rotation maintenance occurred during that left stance phase, affording more internal rotation which is being unchecked and observed here during early swing. Remember though, if this is in fact a cross over gait result, in this gait the limb approaches the ground unstacked (foot is too far inside a left hip joint plumb line) the foot will greet the ground at a far lateral strike and in supination. Pronation will thus be magnified and accelerated, if there is enough time before toe off. However, and you can try this on your own by walking around your home, put yourself in terminal stance at toe off. Make sure you have the foot inverted so you are toeing off the lateral toes (low gear toe off). Does this foot not look like the one in the photo ? Yes it does, now just lift the foot off the ground and you have reproduced this photo. And when combined with a right pelvis drift, the foot will sneak further medially appearing postured behind the right foot.

Keep this in mind as well, final pronation and efficient hallux (big toe) toe off does often not occur in someone who strikes the ground on a far lateral foot. I am sure this runner will now be aware of how poorly they toe off of the big toe, the hallux. They will tend to progress towards low gear toe off, off the lesser toes. This leaves the foot inverted and this is what you are seeing in her the photo above. That is a foot that is inverted and supinated and it carried through all the way through toe off and into early swing. It is a frequently component of the cross over gait, look for it, you will find it, often.

Final thoughts, certainly this can be an isolated left swing phase gluteus medius weakness enabling an adducted swing limb thus procuring a faulty medial foot placement, but it is still part of the cross over phenomenon. Most things when it comes to a linked human frame do not work in isolation. But i will leave you with a complicating factor and hopefully you will realize that gait analysis truly does require a physical exam, and without it you could be missing the big picture problem. What if she has a notable fixed anatomic internal tibia torsion on that left side. Yup, it could all be that simple, and that is not something you can fix, you learn to manage that one as a runner.

* Side bar rant: Look at any google search of runners photos and you will see this type of swing limb foot posturing often, far too often. And yes, you can take the stance that “I do it as well and i have no injuries or problems so what is the big deal?”. Our response is often “you do have an issue, it may be anatomic or functional, but you do have an asymmetrical gait and you think it is not a problem, YET”. And maybe you will run till you are 6 feet under and not have a problem because you have accomodated over many years and you are a great compensator, yes, some people get lucky. Some people also do not run enough miles that these issues express themselves clinically so lets be fair. But some of these people are reality deniers and spend their life buying the newest brace or gadget, trying a different shoe insert, orthotic or new shoe of the month and shop over and over again for another video gait analysis expert who can actually fix their pain or problem. And then there are those who have a 45 minute home exercise program that they need to do to keep their problems at bay, managing, not fixing anything. Or, they spend an hour a week on the web reading article after article on what are the top 4 exercises for iliotibial band syndrome for example. They shop for the newest Graston practitioner, the newest kinesio taping pattern, Voodoo bands, breathing patterns, compression socks etc. And sometimes they are the ones that say they still dont have a problem.You get the drift. Gosh darn it, find someone who knows what the hell they are doing and can help you fix the issues that are causing the problem. And yes, some of the above accoutrements may be assistive in that journey.

I have dealt with this unique toe off issue way too many times not to roll my eyes at it any longer. It is to the point that it is an automated evaluation and solution program that begins to run in my head. Once you see something enough times, you learn all of the variations and subtle nuiances that a problem can take on. But, trying to fit everyone into a similar solution model is where the novice coach, trainer or clinician will get into trouble. Trust us, it all starts with an examination, a true clinical physical examination. If one leaves the investigatory process to a series of screens or functional movement patterns, “activation” attempts, digital gait analysis or strength tests one is juggling chainsaws and the outcome you want is often not likely to occur. There is nothing wrong with making these components part of the investigation process, but on their own, they are not enough to get the honest answer many times. Of course, Ivo and i were not able to jump the pond and examine this runner with our own eyes and hands so today’s dialogue was merely to offer this runner some food for thought to open their mind to our thought process, in the hopes that they can find someone to help them solve the underlying problem and not merely make the gait look cleaner. Making someone’s walking or running gait look cleaner is not hard, but making it subconsciously competent and clean (without thought or effort) requires a fix to the underlying problem. We can ALMOST guarantee you that the solution here to this runner’s form issue is not wholly at the foot that looks in toed and slanted. Merely working on their foot strike would be so remedial and corrupt that it would a crime.

Dr. Shawn Allen, one of the gait guys

Step width: Head over foot ?

Step width, "head over foot"?

There has been some decent debate on "head over foot" running biomechanics. We postulate from our years of reading research and studying people's gait (coupled with physical examination, a neuromuscular assessment, not just a visual assumption) that the head should remain within the limits of the step width. This theory falls apart if someone is a crossover gait runner or walker (search our blog for this "cross over gait" idea). IF one is a narrow step width (cross over gait, not a literal cross over of course) then the head must basically be over the foot on each step. But this is a gait with severe limitations and lots of risks and biomechanical problems as we have written about many times, though one can say is has some economical aspects which we have proposed many times.
But, if the head is outside the step width, one is leaning and this resembles a pathologic Trendelenburg gait. Can we definitively then say that when the head is outside the foot contact (beyond the limits of a person's step width) that it is problematic? No, but it is likely pathologic and clearly uneconomical.

So the fence seems to be the head over the foot.
If you are outside that fence even a little, you may be (we strongly believe) on the wrong side of the fence. Look at a CP gait (photo below) for example, point made. So, would you rather be on the other side of the fence? We would, we want to be inside the step width and we are fine going right up against the fence (the head foot) but not over top of it. One cannot just say that the head over the foot is better. What about hip and pelvis stability ? If the hips-pelvis are drifting into the frontal plane, this will put the head over the foot as a default. So does this validate the head over foot theory as good in this client ? No, we see this as a problematic gait all the time, lots of hip and spinal stability issues in these clients. One cannot stand and preach on head over foot alone. We just made the case that in a frontal plane drift pelvis client, this is a compensatory default, but it doesn't make it a good thing, far from it.

For now, we will stay put that, with all other faulty mechanics not present, a more sound head position is to be found between the limits of the step width. Yes, right up to the fence of "head over the foot", but not over top as a sound pattern to play with. Why risk falling over the fence on some steps, Try this, stand on one foot, put your head over the foot. In this position, you had to drift the pelvis laterally into the frontal plane. Now try to effectively engage your glute. Enough said, for now. So why would we promote this as an effective running form? More to come we are certain, but we are open to debate, and to being schooled wrong. If you wish, go into our blog (link below) and read up on the effects of step width on gait, and all of the risks/problems that a narrow step width promotes (ie. head over foot).

https://www.google.com/search?q=the+gait+guys+step+width&ie=utf-8&oe=utf-8&client=firefox-b-1-ab

Imaging things can make them better.

Imagining can make things better.

Visualization is a key in most sports and activities if one wants to improve their skill and performance. Gait retraining through visualization should thus work as well. This study which has yet to be executed, hypothesizes that we should be able to change and improve our gait through visualization of changes. Motor imagery, envisioning motor actions without actual execution, has been used to improve gait in Parkinson's disease and post-stroke. In this study subjects will be asked to specifically imagine walking, imagine talking and imagine walking while talking. It will be interesting to see what they discover, but we suspect that this should be like improving any other motor task, that visualization improves the task. Learning occurs on several levels. One should also consider not only asking clients to do their prescribed corrective exercise homework and movements, but also visualize them even when actual physical execution is not feasible.

Neurodegener Dis Manag. 2017 Nov 22. doi: 10.2217/nmt-2017-0024. [Epub ahead of print]
Motor imagery of walking and walking while talking: a pilot randomized-controlled trial protocol for older adults. Blumen HM1, Verghese J1.

When one foot is shorter, and smaller. Gait thoughts to consider.

Screen Shot 2018-04-06 at 8.35.33 AM.png

This person had a congenital “club foot” at birth also know as congenital talipes equinovarus (CTEV). It is a congenital deformity involving one or both feet. In this case it affected the right foot (the smaller one).
Foot size is often measured with the Brannock device in shoe stores, you know, the weird looking thing with the slider that measures foot length and width. In this case, the right heel:ball ratio, the length from the heel to the first metatarsal head, is shorter. The heel:toe length is also shorter, nothing like stating the obvious ! IF they are shorter then the plantar fascia is shorter, the bones are shorter, the muscles are smaller etc.

So, the maximal height of the arch on the right when the foot is fully supinated is less than that of the left side when also fully supinated (ie. during the second half of the stance phase of gait). Even with maximal strength of the toe extensors which we spoke of yesterday will not sufficiently raise the arch on the right to the degree of the left.

Thus, this client is very likely to have a structural short leg. Certainly you must confirm it but you will likely see it in their gait if you look close enough.
Also, you must remember that the shorter foot will also spend fractionally less time on the ground and will reach toe off quicker than the left. This may also play into a subtle limp.
This client may have a mal-fitting shoe, the right foot will swim a little in a shoe that fits correctly on the left. You may be easily able to remedy all issues with a cork full length sole insert lifting both the heel and forefoot. This can negate the shoe size differential, change the toe off timing and remedy much of the short leg issue. You will know that the right foot at the metatarsal-phalangeal joint bending line will not be flexing where the shoe flexes on that right foot. The Right foot will be trying to bend proximal to the siping line where the shoe is supposed to naturally bend. This will place more stress into that foot. This brings up the rule for shoe fit: never size a persons shoe by pinching the toebox to see if there is ample room, the shoe should be fit to meet the great toe bend point to the flex point of the shoe.
Strength of muscles is directly proportional to the cross sectional area of the muscle. With smaller muscles, this right limb is very likely to be underpowered when compared to the left.
All of these issues can cause a failure of symmetrical hip rotation and pelvic distortion patterning.
Altered arm swing (most likely on the contralateral side) is very likely to accommodate to the smaller weaker right lower limb. Do not be surprised to hear about low back pain or tightness or neck/shoulder issues.
A shorter right leg, due to the issues we have discussed above, will place more impact load into the right hip ( from stepping down into the shorter leg) and more compressive load into the left hip (due to more demand on the left gluteus medius to attempt to lift the shorter leg during the right leg swing phase). This will also challenge the pelvic symmetry and can cause some minor frontal plane lumbar spine architecture changes (structural or functional scoliosis…… if you want to drop such a heavy term on it).

Gait plays deeply into everything. Never underestimate any asymmetry in the body. Some part as to take up the slack or take the hit.

post link:

https://thegaitguys.tumblr.com/post/23230149195/we-could-have-easily-made-this-a-blog-post-about

Nose picking and your running form problems.

Nose picking and running form

I use an example, with the appropriate clients, that humidifying one's home in the dry winter to try and break a nose picking behavior that was borne of resultant dry mucous linings doesn't necessarily mean one will break the 3 month habit of nose picking.
Furthermore, just because you decide to humidify the house doesn't mean your brain is going to halt the nose picking that has become a subconscious habit. Similarly, consciously asking someone to turn in their externally rotated foot (increased foot progression angle) or turn in the entire limb during gait, which might have been the result of frontal plane weakness of the ankle from an ankle sprain, isn't going to fix a problem that has now become an adaptive compensatory behavior at the hip. One has to get to the root of the problem, the unaddressed ankle sprain and neurologic behavioral adaptive patterns, at both the ankle and the hip. Plus, it just might get you to stop picking your beak, although, some sources now say that a good digested booger might be good for your immune system (probably a piece written by a happy confident picker).
- a Monday morning Dr. Allen rant

4 ways to fix your running stride ? ummmm

Just too simple and cooked down an article for us.
eh, maybe 2 of these have some value. But we wouldn't head to the bank on them. We have plenty of pro runners who have a decent hallux rigidus and compensate surprisingly well. But, if it ain't broken, and causing other things to become broken, leave it alone. Consider making anatomic anomalies more durable when you cannot fix or change them. As for premature heel rise, "stretch the calf", that is all they were willing to come up with? Our readers know to go a little deeper (anterior compartment assessement, hip extension assessment etc). Zero mention of hip as a cause. He merely touched on the hip drop one in our post yesterday, but that is a goliath of a topic. Read with a jaundiced eye.
 

4 Ways to Fix Your Running Stride

A seasoned biomechanics expert offers his top insights on running-form danger signs


https://www.outsideonline.com/2293286/four-ways-fix-your-running-stride?utm_medium=social&utm_source=facebook&utm_campaign=onsiteshare

More on the Z-angle

More on the "Z-angle". Why your hip and ankle have to talk to each other.

We have been saying this kind of stuff for years, but in this video perhaps Gray Cook says it in a way that will resonate well with some when we can be a bit too wordy at times, Gray is always eloquent and well spoken. We often discuss this ankle and glute relationship he mentions in a topic we refer to as "the Z- angle". And, we discuss the greater global ramifications of unresolved ankle sprains. Search our blog for these terms and topics.
It is rare that our in-office therapy and our corrective home work for a client does not address both the ankle and hip simultaneously. We know this tight relationship exists, and so should you.
In many of our podcasts and blog posts we pound sand on the fact that just because you have ankle mobility on the exam table does not mean you will have it available in some movement patterns or in some of your sport movements. And, ankle functional impairments are key players in multiple injuries and impaired movement patterns. We like the "software vs hardware" terminology he uses, we will be borrowing that verbiage in the future, it is a nice way to tighten up a dialogue without getting wordy. Great job as always Gray !
https://www.youtube.com/watch?v=U93MoOxN49c

Podcast 120: Runner's Brains & Glute Rabbit holes


Show links:
http://traffic.libsyn.com/thegaitguys/pod_120_real_final.mp3

http://thegaitguys.libsyn.com/podcast-120-runners-brains-glute-rabbit-holes

Key tag words:
running, running form, running tricks, gait, gait analysis, the gait guys, brain, statins, glutes, runner's brain, 
 
Show sponsors:
newbalancechicago.com
 
www.thegaitguys.com  is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).
 
Our podcast is on iTunes, Soundcloud, and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.
 
Show Notes:
 
Neuroscience:
 
Statins and exercise
http://www.nytimes.com/2017/01/04/well/move/a-fitness-downside-to-statin-drugs.html?utm_medium=email&utm_source=flipboard&_r=0
 
Cholesterol reference:
http://circ.ahajournals.org/content/early/2016/11/21/CIR.0000000000000461
 
Joe Rogan Experience Podcast: #842, Dr. Chris Kresser
 
Follow Chris Beardsley at "Strength and Conditioning Research" and Bret Contreras, "the glute guy". They always have great research based stuff.
 
Young runners have stronger brain connections
http://www.futurity.org/running-functional-connectivity-1317802-2/
 
Runners and connected brains
http://www.sciencealert.com/runners-brains-are-more-connected-than-most-study-says
 
Runners brains:
http://journal.frontiersin.org/article/10.3389/fnhum.2016.00610/full
 
Early sport diversification vs. late specialization
http://www.humankinetics.com/excerpts/excerpts/late-specialization-is-recommended-for-most-sports

Podcast 116: Running Cadence & Tricks


Key tag words:
running, cadence, form, running form, running tricks, gait, gait analysis, the gait guys, CRISPR, brain implants, spinal regeneration, coordination

Direct download URL:
http://traffic.libsyn.com/thegaitguys/pod_116_final_2.mp3

Permalink URL:
http://thegaitguys.libsyn.com/episode-116

Libsyn directory URL:  http://directory.libsyn.com/episode/index/id/4901265

Key tag words:
running, cadence, form, running form, running tricks, gait, gait analysis, the gait guys, CRISPR, brain implants, spinal regeneration, coordination
 
Show sponsors:
 
www.thegaitguys.com
That is our website, and it is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).
 
Our podcast is on iTunes, Soundcloud, and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.
 
Show Notes:

Human patient treated with CRISPR gene editing for the first time.
http://www.popsci.com/crispr-tested-in-human-patient-for-first-time

For the First Time, a Wireless Brain Implant Has Enabled Paralysed Primates to Walk Again
http://www.sciencealert.com/for-the-first-time-a-wireless-brain-implant-has-enabled-paralysed-primates-to-walk-again

Scientists May Have Found Protein That Could Help Unlock Spinal Regeneration in Humans
http://futurism.com/scientists-may-have-found-protein-that-could-help-unlock-spinal-regeneration-in-humans/

Cadence:
"Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury."

Hafer JF, Freedman Silvernail J, Hillstrom HJ, Boyer KA. Changes in coordination and its variability with an increase in running cadence. J Sports Sci. 2016 Aug;34(15):1388-95. doi: 10.1080/02640414.2015.1112021. Epub 2015 Nov 20.

http://www.thegaitguys.com/thedailyblog/2016/10/16/music-to-my-earsand-steps-to-my-cadence

http://www.thegaitguys.com/thedailyblog/2016/10/16/step-rate-to-change-foot-strike

http://www.thegaitguys.com/thedailyblog/2016/10/16/cadence
-cadence and running. Increasing it as little as 5% seems to decrease vertical loading rates in the achilles tendon.

A Metabolic Cost to the Cross over gait.

Here is what we know, when we put our foot on the ground, we, as humans who sit too much and tend to get into sagittal plane activities too often, things like swimming, biking, walking, running -- and do not challenge the frontal/lateral plane enough earn our way into functional problems:  "Walking appears to be passively unstable in the lateral direction, requiring active feedback control for stability. The central nervous system may control stability by adjusting medio-lateral foot placement, but potentially with a metabolic cost. This cost increases with narrow steps and may affect the preferred step width." -Donelan study


For well over 6 years now I have been working on solidifying my thoughts and theories on the cross over gait. I did our 3 part video series back in 2011 and Ivo and I have built our theories to deepen the roots on this concept since then. Since then, the more research I come across continues to serve these initial theories well and help me to hone them for my clients and runners. Some still dismiss the concept because "many professional runners have a very narrow step width and they are fine" -- that is not the point, it is deeper than that. More recently I have found it more helpful to explain it as, "a narrow step width, like all things off of the mechanical norm, have a place and some value when the environment requires it. However, it comes down to a challenge between the two issues of Economy and Liability, perhaps better put, Economy vs Stability. A  narrow step width may be more economical for moving through the sagittal plane in many ways, if they have sufficient lateral (frontal plane) endurance, but if one goes too far or for too long, that economy can become a liability and injury risk can build as one begins to tease that lateral plane."  I will ask my athletes, "how long can you be in this running economical place before you run out of gas and liabilities start to mount into the more metabolically demanding frontal plane?".  Endurance and strength are the major factors, built on skillful movement. The question remains for many athletes, "how long can you run with a narrower step width, with your present lateral hip-pelvis-core endurance and stability, before you exhaust the endurance of your protective mechanisms and expose the liabilities of those more risky frontal plane mechanics ?"

Again, from the Donelan study:
"Walking appears to be passively unstable in the lateral direction, requiring active feedback control for stability. The central nervous system may control stability by adjusting medio-lateral foot placement, but potentially with a metabolic cost. This cost increases with narrow steps and may affect the preferred step width. 
These results suggest that (a). human walking requires active lateral stabilization, (b). body lateral motion is partially stabilized via medio-lateral foot placement, (c). active stabilization exacts a modest metabolic cost, and (d). humans avoid narrow step widths because they are less stable."

- Dr. Shawn Allen, one of the gait guys

J Biomech. 2004 Jun;37(6):827-35.  Mechanical and metabolic requirements for active lateral stabilization in human walking.  Donelan JM1, Shipman DW, Kram R, Kuo AD.