Heart disease and changes in gait.

Research is finding some clues. . . . ankle plantarflexion. The calf as a locus of impaired walking capacity.

Dr. Ted Carrick was once heard saying that even in the earliest phases of neuropathology, stages possibly so early that neuropathology is absent from most testing results (incidentally, we discuss this on a recent podcast, 137 or 138 and what tests might help in the discovery when things like EMG/NCV are "normal"), that subtle changes in one's gait might be the first sign(s) of aberrant sensory-motor function when all other methods prove unfruitful in the discovery process.

Reduced walking capacity is a hallmark of chronic heart failure (CHF). Why is this? It is reduced fitness ? It is weakness, stiffness, reduced metabolic capacity ? It could be all of them, and many more.
This interesting study found "over two times greater ankle plantarflexion work during stance and per distance traveled is required for a given triceps surae muscle volume in CHF patients. This, together with a greater reliance on the ankle compared to the hip to power walking in CHF patients, especially at faster speeds, may contribute to the earlier onset of fatigue in CHF patients."

This makes sense to us, after all, the much work (perhaps 50%~?) should be provided by the glutes and core in the propulsion phase of gait. But we know that the elderly, and especially the weak elderly, who walk with shorter steps and strides, who walk slower, who are weaker and more fragile, that their capacity for propulsion is notably diminished in the later years. The later years when CHF is also found. Thus, how do these folks find ways to effectively move forward? This study provides one possible clue, the ankle plantarflexors, the gastrocsoleus-achilles complex.

"This observation also helps explain the high correlation between triceps surae muscle volume and exercise capacity that has previously been reported in CHF. Considering the key role played by the plantarflexors in powering walking and their association with exercise capacity, our findings strongly suggest that exercise-based rehabilitation in CHF should not omit the ankle muscle group."

J Biomech. 2014 Nov 28;47(15):3719-25. doi: 10.1016/j.jbiomech.2014.09.015. Epub 2014 Oct 11.
Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity.
Panizzolo FA1, Maiorana AJ2, Naylor LH1, Dembo L3, Lloyd DG4, Green DJ5, Rubenson J6.

Heel lift or sole lift ?

*DO NOT USE A HEEL LIFT, please, for the love of God and all that is beautiful on this earth stop using just heel lifts to correct a length length discrepancy, and thus causing plantarflexion at the ankle by raising just the heel. What about raising the forefoot, too ?! Heel lifts are specific unicorns you only use when you are trying to get more plantarflexion at the ankle, unload a barking unresponsive achilles tendonitis, or for some strange reason you wish to rush someone to the forefoot, or want a shorter posterior compartment (amongst other stupid things you probably do not want in your client mechanics)).
Besides, many people's problems arise from insufficient ankle rocker/dorsiflexion as it is , so why are you sentencing them to the depths of hell by predisposing them to pre-plantarflexed strategies ? You should love your clients ! Using a heel lift requires smarts, deep smarts, and intimate understanding of the pitfalls of pre-positioning the heel higher than the forefoot and what it may do to your clients mechanics over time. Did decades of high heel ramp, high heel-toe drop shoes or a century of high heeled women's shoes not teach us anything? (ok, we are going overboard here to make our point :)
When do we almost exclusively use a heel lift? Very temporarily in unresponsive achilles tendonopathies, and even that can be argued. But, sometimes you have to use unicorns and black magic.
Use your noggin, daily.

shawn and ivo, the gait guys

#gait, #gaitproblems, #gaitanalysis, #thegaitguys, #heellifts, #solelifts, #anklerocker, #ankleplantarflexion, #ankledorsiflexion, #heeltoedrop, #heelrise, #shortachilles

The gastroc can causse ankle dorsi and plantarflexion ? Yup. What ?

The gastroc, does it cause ankle dorsiflexion and ankle plantarflexion ? Yup. What ?

You may think you know the answer, the gastrocs are ankle plantarflexors, because that is the easy one we all recognize. But I stew on things when unique cases come in and do not fit the "normal" models and it got me reviewing principles I need to always keep in mind.

Think about it, the gastroc cross the knee, so it causes knee flexion. And when the knee flexes, the proximal tibia is progressing forward in the sagittal plane. Now remember, the foot is on the ground, so the distal tibia is (relatively) fixated in relation to the upper tibia. So, as this proximal top tibial moves forward, because of gastroc contraction, the muscle is actually causing ankle dorsiflexion !

So, it is it important to know your normal gait cycle events ? Yes, Ivo and i harp on that all the time ! One has to know the normal cycles to know when abnormal gait cycles are presenting clues.
So, am I saying that the gastroc are helpers of ankle rocker and ankle dorsiflexion ? Yes, they can be. It is a timing thing. So, we have to again get out of our model of open chain events, and thinking that only the anterior compartment muscles are ankle dorsiflexors. We also have to remember that a bent knee heel raise is not the same as a straight leg (knee extension) heel raise. One can stimulate and assist in ankle dorsiflexion and the other cannot so much. So, in clients with loss of ankle dorsiflexion/ankle rocker should you be assessing the function of the gastroc at the proximal knee, for its effects of dorsiflexion at the ankle ? Yes. Go ahead and try it, bend knee and straight knee heel raises, they are different beasts. This gets more complicated, and i will go into that next week ! I have had some deeper epiphanies i wish to share.
Also, remember, single and biarticular muscles have varied and vast capabilities. Thus it is always vital to consider whole body movements where muscles have abilities to accelerate, decelerate, and control and stablize joints they span, and do not span, via dynamic coupling.
Dr. Allen

Plantar flexion matters, too. Don't get stuck only on ankle rocker/dorsiflexion.

Screen Shot 2018-02-03 at 11.54.39 AM.png

Plantarflexion matters, too.
"one must gain posterior length through anterior strength, lose the strength, lose the length."

We always seem to be harping on ankle rocker and ankle dorsiflexion. But, ankle plantarflexion matters just as much, but in different ways. This study went off of plantarflexion contracture, but we see shortness in the gastroc and soleus all the time, it seems in fact to go with loss of anterior compartment weakness, which is in essence, a functional (if not more truly restricted) loss of ankle rocker. Typically these 2 beasts are both in the same shopping bag. It is why we like to say, "one must gain posterior length through anterior strength, lose the strength, lose the length." This is not to say that shortness, tightness or contracture are the same thing, in fact they are on completely different spectrums. But, losing "posterior mechanism" length (short, tight or contracture), for whatever reason will do many potentially bad things to one's gait cycle and biomechanics. There are too many here of those to name, but, a functionally longer leg, tendency towards knee extension, knee flexion accomodation, early heel rise, abrupt departure from the limb and and abruptly onto the contralateral side, increased forefoot loading problems, toe clenching, loss of hip extension, impaired hip extension, increased quadriceps tone (and thus possible increased PF joint compression), changes in step and stride length and step width are just the start of some of the things your brain needs to start juggling.

The above are some of the thoughts immediately triggered by reading this abstract , , ,

Clinical Biomechanics. Volume 29, Issue 4, April 2014, Pages 423-428
The impact of simulated ankle plantarflexion contracture on the knee joint during stance phase of gait: A within-subject study
Joan Leung, Richard Smith, Lisa Anne Harvey. Anne M. Moseley, JosephChapparo

Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

 

Attached is an older video from a few years back , it is very similar in execution to the heel-rise ball squeeze exercise which is the precursor to this more functional engagement as shown in this video today.  


The important premise is that you have to have command of the entire posterior compartment if you are to get safe, effective, efficient and adequate ankle plantarflexion. As we have discussed many times, if you do not have the requisite skills as shown in this video you are in trouble and ankle sprains and other functional pathologies are not unlikely to visit you.  Additionally, without requisite posterior compartment endurance and an ability to engage what I like to refer to as "top end" strength in the heel rise is an asymmetrial loading issue and can lead to compensatory adaptations up the kinetic chain. Make no mistake, the load will go somewhere, and thus the work will be done somewhere. In this video you should be able to clearly see and understand that one must be able to achieve top end posturing and have command of lateral and medial forefoot loading responses and challenges if clean forward function and power is to be achieved, and injuries from extremes of motion medially and laterally are to be avoided. Furthermore, as eluded to here and in several of our podcasts (and in the study included below), an inability to achieve top end posturing will lead to changes in forefoot loading, may spill over into endurance challenges prematurely in the posterior mechanism, and create changes in the timing of the gait cycle (things like premature or delayed heel rise, premature or delayed forefoot loading, recruitment of other components of the posterior chain just to name a few). This parsing and sharing of loads and responsibilities is laid out in the Kulmala study referenced today. The study could be extrapolated to say, I believe, that particularly in sprinting, a failure to achieve top end heel rise through effective posterior mechanism contraction, will change the load sharing between the posterior compartment and the quadriceps. After all, if the calf is weak, the ankle is not in as much plantarflexion, this could mean more knee flexion and thus raise demands on the quadriceps, logically changing knee mechanics.  This is exactly why we spend so much time at every patient visit looking for full range of motion at the joints and then determine the skill, endurance and strength of the associated muscles in supporting that range. Then, of course, comparing this function to the opposite limb.  Symmetry is not everything, but it is definitely a major factor in safe efficient and injury free locomotion.

* Please give great thought to the part in the video where I discuss the drop phase in jumping. All too often we at looking for the propulsive mechanics and forget that a failure there will also be represented during the adaptive phase. Ankle sprains rarely occur from propulsive pushing off, they occur from a failure to properly reacquaint the foot to the ground on the following step.
-Dr. Shawn Allen, one of the gait guys.

In this study the authors noted:
"During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors. Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors. At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors."

And concluded that:
"Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function."

Med Sci Sports Exerc. 2016 Nov;48(11):2181-2189. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles. Kulmala JP1, Korhonen MT, Ruggiero L, Kuitunen S, Suominen H, Heinonen A, Mikkola A, Avela J.
https://www.ncbi.nlm.nih.gov/pubmed/27327033

Where your gait might break down.

Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. - van der Krogt

In the past few weeks I have shared my thoughts on some articles regarding low back paraspinal musculature fatigue and the subsequent effects on motorneuron pools, specifically excitability of the soleus and quadriceps. These shared thoughts are from recent papers in the literature (search the blog over the last week). These effects are suggested to indicate a postural response to preserve lower limb function. In other words, as paraspinal fatigue set in, lower extremity muscle compensation ramped up to sustain postural locomotion demands.  Obviously, one should think this a step further and translate it all into questions of assessment of ankle dorsiflexion (ankle rocker) and control of progressing knee and hip flexion when pertaining to these muscles. The issues of stability and mobility should heighten. The one big problem in these studies, and you have even likely had these thoughts during your clinical examinations, is that one cannot truly fatigue one muscle group alone especially during activity, nor can one assess a single muscle group during manual testing. Luckily we have EMG testing capabilities in this day and age and we can more easily look into the function and reaction of a muscle and its’ direct response reactions. 

Today I have an article by van der Krogt that we read long ago, but that which one of our readers brought back into our wheelhouse.  This is pretty amazing stuff.

“This study examines the extent to which lower limb muscles can be weakened before normal walking is affected. We developed muscle-driven simulations of normal walking and then progressively weakened all major muscle groups, one at the time and simultaneously, to evaluate how much weakness could be tolerated before execution of normal gait became impossible. We further examined the compensations that arose as a result of weakening muscles. Our simulations revealed that normal walking is remarkably robust to weakness of some muscles but sensitive to weakness of others. Gait appears most robust to weakness of hip and knee extensors, which can tolerate weakness well and without a substantial increase in muscle stress. In contrast, gait is most sensitive to weakness of plantarflexors, hip abductors, and hip flexors. Weakness of individual muscles results in increased activation of the weak muscle, and in compensatory activation of other muscles. These compensations are generally inefficient, and generate unbalanced joint moments that require compensatory activation in yet other muscles. As a result, total muscle activation increases with weakness as does the cost of walking.“-van der Krogt

So, if your client comes in with knee, hip or ankle pain and a history of low back pain, you might want to pull out these articles. You may want to consider which muscles are, according to this article, most robust and sensitive to weakness. Remember what I mentioned when i reviewed the soleus article ? I mentioned that the reduced ankle dorsiflexion range may be from a soleus muscle postural compensation reaction to low back pain. Today’s article seemed to confirm that this muscle group is sensitive to weakness. In today’s discussion, not only is the impairment of the hip ranges of motion or control of the knee (from quadriceps adaptive compensation) possibly related to low back pain, in this case, paraspinal fatigue but it may be a muscle group robust to weakness which is a darn good thing when the paraspinals go to nap.

Sometimes the problem is from the bottom up, sometimes it is from the top down. It is what makes this game so challenging and mind numbing at times. If this is all too much for you, in teasing out this quagmire of a system, just throw corrective exercises at your client and hope for the best. What is the worst that can happen if you get it wrong ? Stronger compensations on already present compensations … . . why not, it is good for return business (insert sarcasm emoticon).  But, lets be honest, if it was easy everyone would be doing it the right way. But the truth is that it is a long journey, and we are on the same bus of discovery with you all. 

Dr. Shawn Allen, one of the gait guys.

Reference:

Gait Posture. 2012 May;36(1):113-9. doi: 10.1016/j.gaitpost.2012.01.017. Epub 2012 Mar 3.How robust is human gait to muscle weakness?van der Krogt MM1, Delp SL, Schwartz MH.

Singer Songwriter Jewel and her knee hyperextension.
One of our favorite television shows is “Alaska: The Last Frontier”.  What some of you might not know is that the show is about Singer Songwriter Jewel’s family, the Kilchers. Ye…

Singer Songwriter Jewel and her knee hyperextension.

One of our favorite television shows is “Alaska: The Last Frontier”.  What some of you might not know is that the show is about Singer Songwriter Jewel’s family, the Kilchers. Yes, Her name is Jewel Kilcher.  The theme to the show is written and sung by Jewel and her father Atz Kilcher.  The Kilcher’s are tough folk who live off the grid (mostly) and maintain a subsistence living off the land in Alaska.  

Use the photo above to help you clearly understand what we are talking about in this video here (link)  where we see Jewel and her dad getting ready to sing the show’s theme. In this video, Jewel is in some insanely high heeled shoes and being the gait geeks that we are we could not help but notice the degree of knee hyperextension she was displaying.  

What can we extrapolate from this genu recurvatum / hyper extension knee posturing  ?:

We are going to keep it to things from pelvis down or we will be here all day.

  1. Anterior pelvis tilt. She appears to be sitting back into her pelvis so to speak, doing so we can see an increased lumbar lordosis pressing the pelvis anterior.  In many cases combine this with suspect weak lower abdominals and the pelvis drops in the front. This position is often met with isometric contraction of the gluteals helping to maintain the forward/anterior shifted pelvis.
  2. The above, will create an abnormal (possibly increased) tensile load on the hamstrings since the ischeal tuberosities are being drawn cephalad (up). This can create a net posterior shift of the knee joint since she is in relative hip extension, the pelvis is often also translated forward into the sagittal plane pushing the head of the femur into anterior glide into the front of the acetabulum.
  3. The knees are often locked into hyperextension. This will create meniscal tensions and certainly cause increased patellofemoral pressures.  This can also create the rarely diagnosed, but often present, anteriormeniscofemoral impingement syndrome. In this type of presentation the anterior compressive forces are so great compared to what should be balanced forces around the entire joint that the superior leading edge of the anterior mensicus (can affect medial or lateral menisci) begins to become impinged and irritated as the femur rolls and translates too far anterior. You have to know it exists to make the diagnosis.
  4. She will be in ankle plantarflexion because of the footwear instead of balancing the tibia neutrally over the talus.  The tibia will rest on the posterior talus. If constant, the plantarflexion means shorter posterior compartment (gastroc-soleus) and usually weak anterior compartment (tibialis anterior and long extensors of toes).  If she is a runner we bet shin splints were on her holiday list of things to resolve. 

These are just the sagittal plane flaws we can assume. There are more but this is plenty to think about right now. 

Remember, these are just assumptions. Like in video analysis, anything you pic up on film is just a compensation. It does not tell you what you have wrong until you can test them for neuromuscular integrity and motor pattern assessments.  Do not hang your hat on photos or video analysis. Do the extra work that is required.  After all, you know where ASSUMPTIONS get us.

The Gait Guys.

Shawn and Ivo

“… knowing this will not mistakenly leave one with the interpretation that the joint is suffering restriction, that the joint is merely showing its limitation because of the return shift of the eccentric axis to a less mobile position.” - The Gait Guys  

This video is just the kind of stuff that drives us nuts.  We do not have a personal problem with the good doctor, he may know (and most likely does know) far more than he is letting on here but is merely simplifying things for some reason. We merely have a problem with the information that is missing that could make this a valuable addition, or omission, to someone’s care. There are times to simplify things, but when we put out a video on the web where the world can see it, we try to be as thorough as possible even if this means that something will come across seemingly overcomplicated. The fact of the matter is that human biomechanics are in fact complicated and simplifying something, when it is just not possible to do so, really doesn’t help anyone. People, and maybe some medical professionals, who do not know better will see this and not see what is missing, importantly so, here.

In this video there is no regard to the pre-positioning of the metatarsal to that big toe. This is a very unique joint, it has an eccentric axis that changes with metatarsal plantarflexion and dorsiflexion. This eccentric axis is shifted by the shifting position of the relationship of the metatarsal head with the base of the hallux. Here, at this joint, we have a concave-convex joint interface which with all said joint types, has a roll-glide biomechanical rule.  This rule at this joint is unique in that the axis of roll-glide is eccentric meaning that the joint has a shifting axis during the motion of dorsi and plantarflexion.  This is dictated and dependent upon the posturing of the sesamoid bones properly beneath the metatarsal head.  You can hear more about this premise here, in a video we did a few years ago. It is long, but it is all encompassing.  What is important, that which is not noted here, is that with more metatarsal plantarflexion there is opportunistically more dorsiflexion at the joint.  (This is precisely the joint range loss that occurs in “turf toe”, hallux limitus.)  Thus, in the above video, to properly mobilize the big toe into dorsiflexion, the foot must be taken into full metatarsal plantarflexion (pointing the foot) where greater amounts of joint dorsiflexion will be found (because of the eccentric axis shift) and the joint should be also mobilized in full ankle and metatarsal dorsiflexion, but the therapy giver must know, and be expected to find, that less toe/joint dorsiflexion will ALWAYS be found in this position.  Knowing this will not mistakenly leave one with the interpretation that the joint is suffering restriction, that the joint is merely showing its limitation because of the return shift of the eccentric axis to a less mobile position.   

* Here is a little experiment you can do to teach yourself this principle. It should also help you to realize the gait cycle.

Sit in a chair, cross one ankle over the opposite knee and see what happens to the joint ranges as you proceed.  

  • dorsiflex the ankle and big toe. With your muscles only, not your hands, actively pull back the ankle and toe striving to get the most amount possible of dorsiflexion at both joints.  You should see that there is some toe dorsiflexion of the big toe.  
  • now keeping that big toe dorsiflexed as strongly as possible, begin to plantarflex the foot, thus moving the 1st metatarsal into plantarflexion as well. You should note that the relative amount of toe-metatarsal dorsiflexion DRAMATICALLY increases !
  • you can also do this passively. This time start at full foot plantarflexion (foot pointed) and passively pull that big toe back into dorsiflexion.  A huge range is likely to be found if you have a cleanly functioning foot.  Now, try to hold that significant range while you push the ankle into dorsifleixon.  At the end of the metatarsal and ankle dorsiflexion range you should feel the big toe start to resist this range you are trying to maintain, the big toe will forcibly start to  unwind the dorsiflexion. This is because of the eccentric shift of the joint and tension building in the passive tissues in the bottom of the foot. 
  • You want, and need, these relationships to occur properly and timely in the gait cycle and there are milliseconds to get it right and that means the entire kinetic chain must be clean of flaws, otherwise compensation will occur. (Note: Blocking or trying to control these issues with a foot bed, shoe type or orthotic can either be helpful therapeutically, or harmful to the chain.)

This is precisely what happens in the gait cycle. During swing phase the foot/ankle is in dorsiflexion to create foot clearance and to prepare the foot tripod for the contact phase with the ground.  There is some big toe (hallux) dorsiflexion represented in this swing phase, but it is not a significant amount you likely learned from your own self-demo above, mainly because it is not possible, nor warranted.  But, once the foot is on the ground and moving through the late stance phase of gait into heel rise, the ankle is plantarflexing. Thus, the metatarsals are plantarflexing, and this is causing the slide and climb of the metatarsal head up onto the sesamoids.  This causes the requisite shift of the axis of the 1st MTP joint (metatarsophalangeal) and affording the greater degree of toe dorsiflexion to occur to allow full foot supination, foot rigidity to sustain propulsive loading and also, never to forget, sufficient hip extension for gluteal propulsion. At this point, the range of the big toe in dorsiflexion is far greater than the dorsiflexion of the joint at ankle dorsiflexion. Impairment of this series of events is what leads to turf toe, hallux limitus as it is called. And when that becomes more permanent, even mobilizing the joint, as seen in the video above or otherwise, is not likely to get you or your client very far in terms of normal gait restoration.  And forcing it, won’t made it so either.

Remember this, the kinetic chain exists and functions in both directions. If you are starting with a hip problem that limits hip extension, and thus full range toe off during gait, in time you will lose the end range of the toe-off dorsiflexion range. And any attempts to try and regain it at the foot will fail long term if you do not remedy the hip.  "If you don’t use it, you will lose it". So to gain it back actively, sometimes you have to restore all of the functional losses of the entire kinetic chain to get what you are hoping for.  And for all you people doing “activation” to the glutes on your athletes, finding you are having to do it over and over and over again…….day after day after day, well … . . we hope you take this blog article to heart and put this thought process into action.

Remember, if you do not have the requisite strength, skill and endurance of the 2 toe extensors and 2 toe flexors as well as sufficient strength of the tibialis anterior (as well as many other components) you are likely to see impairment of this joint.  In this environment, do not expect joint mobilizations to offer you anything functionally lasting.  

We are not saying that joint mobilizations are useless and unnecessary, not by any means.  We are saying that you have to know what you are doing when you do them, so you can get the results you desire or, to realize why you are not getting the results you desire.  

Treat your clients with clear biomechanical knowledge and you will get the results you desire. If you go in with limited knowledge, results may speak for themselves. 

Gait analysis and understanding movement of the human body is a difficult task. It takes many years to learn the fundamental parameters and then many decades to implement the understanding wisely and with effectiveness.  Here at the gait guys, we hope to someday get to this point. We too, are students of gait and gait pathology. It is a journey.

“Once you understand the way broadly, you can see it in all things.”  -Miyamoto Musashi

 

Shawn and Ivo, The Gait Guys

The “Top-End” Peroneal Walk Foot Skill: Another Restoration Foot Trick by The Gait Guys

Have stability problems in your ankles ? Lots of people do !
Here is a brief video of a simple, but difficult, functional exercise to strengthen the peroneal muscles in full plantar flexion (we will give more detailed tricks and techniques away on the Foot-Ankle DVD exercise series, once we get some time to get to it !). The key here is to not let the heel drop during single fore-foot loading and to keep the ankle pressing inwards as if to try and touch the ankles together medially …..if you feel the heel drop on the single foot loaded side (or you can feel the calf is weaker or if you feel strain to keep the inward press of the ankle) then it might be more than the peronei, it could be the combined peroneal-gastrocsoleus complex. The key to the assessment and home work is to make sure that the heel always stays in “top-end” heel rise plantarflexion. But you have to strongly consider the peronei just as seriously. Studies show that even single event sprains let alone chronic ankle sprains create serious incompetence of the peronei. Most people do not notice this because they never assess the ability to hold the foot in full heel rise (plantarflexion) while creating a valgus load (created by the peronei mostly, a less amount from the lateral calf) at the ankle. This is why repetitive sprains occur. The true key to recovery is to be able to walk on the foot in this heel-up “top-end” position while in ankle eversion (ankles squeezed together) as you see in this video. This is something we do with all of our basketball and jumping sports athletes and it is critical in our dancers of all kinds. And if they cannot do the walking skill or if they feel weakness then we keep it static and put a densely rolled towel or a small air filled ball between the ankles and have them do slow calf raises and descents while squeezing the towel-ball with all their ability. This will create a nice burn in the peroneal muscles after just a few repetitions. The user will also quickly become acutely aware of their old tendency to roll to the outside of the foot and ankle because of this lack of awareness and strength of those laterally placed ankle evertors - the peronei. It is critical to note that If you return to the ground from a jump and cannot FIRST load the forefoot squarely and then, and only then, control the rate of ankle inversion and neutral heel drop (ankle dorsiflexion) then you should not be shocked at chronic repetitive ankle sprains. Remember, the metatarsals and toes are shorter as we move away from the big toe, so there is already a huge risk and tendency to roll to the outside of the foot through ankle inversion. Hence why ankle sprains are so common. We call this “top end” peroneal strength but for it to be effectively implemented one must have sufficient top end calf strength as well, you cannot have sound loading mechanics without both.
It is not as easy as it appears in this video. We encourage you to give this a try and we bet that 1 out of every 2 people who try it will notice “top end” weakness felt either in the peronei and/or in the calf via inability to keep the heel in “top-end”. Oh, and do not think that you can simply correct this by more calf work, not if the peronei are involved, which they usually are.
One more trick by The Gait Guys………bet you cannot wait for the foot dvd huh !? Ya, it has only been on our list for 3 years now !
 We talk more about this kind of stuff on our National Shoe Fit Certification program.
Email us if you are interested thegaitguys@gmail.com