Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

Attached is an older video from a few years back , it is very similar in execution to the heel-rise ball squeeze exercise which is the precursor to this more functional engagement as shown in this video today.

The important premise is that you have to have command of the entire posterior compartment if you are to get safe, effective, efficient and adequate ankle plantarflexion. As we have discussed many times, if you do not have the requisite skills as shown in this video you are in trouble and ankle sprains and other functional pathologies are not unlikely to visit you. Additionally, without requisite posterior compartment endurance and an ability to engage what I like to refer to as "top end" strength in the heel rise is an asymmetrial loading issue and can lead to compensatory adaptations up the kinetic chain. Make no mistake, the load will go somewhere, and thus the work will be done somewhere. In this video you should be able to clearly see and understand that one must be able to achieve top end posturing and have command of lateral and medial forefoot loading responses and challenges if clean forward function and power is to be achieved, and injuries from extremes of motion medially and laterally are to be avoided. Furthermore, as eluded to here and in several of our podcasts (and in the study included below), an inability to achieve top end posturing will lead to changes in forefoot loading, may spill over into endurance challenges prematurely in the posterior mechanism, and create changes in the timing of the gait cycle (things like premature or delayed heel rise, premature or delayed forefoot loading, recruitment of other components of the posterior chain just to name a few). This parsing and sharing of loads and responsibilities is laid out in the Kulmala study referenced today. The study could be extrapolated to say, I believe, that particularly in sprinting, a failure to achieve top end heel rise through effective posterior mechanism contraction, will change the load sharing between the posterior compartment and the quadriceps. After all, if the calf is weak, the ankle is not in as much plantarflexion, this could mean more knee flexion and thus raise demands on the quadriceps, logically changing knee mechanics. This is exactly why we spend so much time at every patient visit looking for full range of motion at the joints and then determine the skill, endurance and strength of the associated muscles in supporting that range. Then, of course, comparing this function to the opposite limb. Symmetry is not everything, but it is definitely a major factor in safe efficient and injury free locomotion.

* Please give great thought to the part in the video where I discuss the drop phase in jumping. All too often we at looking for the propulsive mechanics and forget that a failure there will also be represented during the adaptive phase. Ankle sprains rarely occur from propulsive pushing off, they occur from a failure to properly reacquaint the foot to the ground on the following step.
-Dr. Shawn Allen, one of the gait guys.

In this study the authors noted:
"During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors. Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors. At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors."

And concluded that:
"Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function."

Med Sci Sports Exerc. 2016 Nov;48(11):2181-2189. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles. Kulmala JP1, Korhonen MT, Ruggiero L, Kuitunen S, Suominen H, Heinonen A, Mikkola A, Avela J.
https://www.ncbi.nlm.nih.gov/pubmed/27327033

https://youtu.be/8T9UzOaYxmo

the gait guys
#gait, #gaitproblems, #thegaitguys, #gaitanalysis, #heelrise, #calfstrength, #toeoff, #forefootloading, #metatarsalgia, #inversionsprain


GHS (generalized hypermobility syndrome) and foot loading.

GHS: Generalized Hypermobility Syndrome

Screen Shot 2018-11-16 at 6.20.23 PM.png

We have all seen these types of clients/patients. They have joints that have more than ample full range. It is easy for them to hyperextend their elbows and knees. They can fold over and touch their toes, everything seems lax and flexible. What they need is help gaining more control of their joints. But what about their gait ? Albeit a focal study, finally someone has looked at how these people interface the ground,

The forefoot region received higher loading in GHS clients.
So what could this mean? Does it mean they have challenges transitioning from rearfoot to forefoot? Does it mean their center of pressure is more foreward biased ? Does it mean they have to impart heavier loads through the forefoot during gait to feel stable? Are they premature heel raisers thus showing the forefoot bias increase? There are many questions here, too broad for this study, but they are the keys to understanding how the GHS body interprets movement. Regardless, it is highly suspect that these clients dominate their gait with the calf muscle complex doing plenty of extra work. We suspect they will be toe clenchers/grippers ( ie, have increased toe flexor dominance) and this can have long term impact on things like metatarsal loads, neuroma formation, bunions, lumbrical weakness, fat pad displacement, hammer toes and many other related issues that occur with premature or excessive forefoot loading. They may even have a little of that vertical bouncy gait we often discuss. We will keep our eyes open for this stuff and keep you in the loop.

J Back Musculoskelet Rehabil. 2018 Nov 2. doi: 10.3233/BMR-170973. [Epub ahead of print]
Generalized hypermobility syndrome (GHS) alters dynamic plantar pressure characteristics.
Simsek IE1, Elvan A1, Selmani M2, Cakiroglu MA2, Kirmizi M2, Angin S1, Bayraktar BA3.

Podcast 137: Running: Limitations in thoracic spine function matter

We cover many aspects of human movement on this podcast, the topics are broad ranging on today's show, but they are worthy of your time in our opinion.

direct download: http://traffic.libsyn.com/thegaitguys/pod_138f.mp3

Permalink: http://thegaitguys.libsyn.com/podcast-137-running-limitations-in-thoracic-spine-function-matter

Libsyn: http://directory.libsyn.com/episode/index/id/6866653


Key words:
arm swing, thoracic extension, scapular retraction, arch height, rear foot posting, forefoot loading, ankle dorsiflexion, ankle rocker, shoulder extension, SSEP, F-wave, EMG/NCV testing, gait ataxia
 
Here are some key quotes from today's show:


You may have the range of motion, but are you actually able to use it?
You haven't truly injured yourself, you've just lost your ability to compensate.

And we discuss a case study today, where the following paragraph is germane.

"Abnormal gait changes might be the first signs of an early slow cooking neurologic disorder. Most, not all, pathology is afferent, yet most (not all) EMG/NCV testing is geared towards the efferent pathology (motor end organ disease, not sensory compromise), hence, testing can miss your client's pathology.  We discuss a classic case where the client clearly had the beginnings of a neurologic disorder on our exam (clonus and joint position sense changes and clear ataxic gait) yet the testing "that was done" showed a normal study of this client.  Much pathology is afferent, the input is the problem, so you need to consider requesting Sensory nerve action potentials, SSEP and F-wave testing, because they are difficult to elicit and good technique is paramount. Hence these extra components of the test are not done, and you need to ask for this in your testing.  "Maybe it's not there because you are not looking".  We have much more on this topic, come listen to Podcast 138 and get the full monty."

Our Websites:
www.thegaitguys.com

summitchiroandrehab.com doctorallen.co shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

 

Attached is an older video from a few years back , it is very similar in execution to the heel-rise ball squeeze exercise which is the precursor to this more functional engagement as shown in this video today.  


The important premise is that you have to have command of the entire posterior compartment if you are to get safe, effective, efficient and adequate ankle plantarflexion. As we have discussed many times, if you do not have the requisite skills as shown in this video you are in trouble and ankle sprains and other functional pathologies are not unlikely to visit you.  Additionally, without requisite posterior compartment endurance and an ability to engage what I like to refer to as "top end" strength in the heel rise is an asymmetrial loading issue and can lead to compensatory adaptations up the kinetic chain. Make no mistake, the load will go somewhere, and thus the work will be done somewhere. In this video you should be able to clearly see and understand that one must be able to achieve top end posturing and have command of lateral and medial forefoot loading responses and challenges if clean forward function and power is to be achieved, and injuries from extremes of motion medially and laterally are to be avoided. Furthermore, as eluded to here and in several of our podcasts (and in the study included below), an inability to achieve top end posturing will lead to changes in forefoot loading, may spill over into endurance challenges prematurely in the posterior mechanism, and create changes in the timing of the gait cycle (things like premature or delayed heel rise, premature or delayed forefoot loading, recruitment of other components of the posterior chain just to name a few). This parsing and sharing of loads and responsibilities is laid out in the Kulmala study referenced today. The study could be extrapolated to say, I believe, that particularly in sprinting, a failure to achieve top end heel rise through effective posterior mechanism contraction, will change the load sharing between the posterior compartment and the quadriceps. After all, if the calf is weak, the ankle is not in as much plantarflexion, this could mean more knee flexion and thus raise demands on the quadriceps, logically changing knee mechanics.  This is exactly why we spend so much time at every patient visit looking for full range of motion at the joints and then determine the skill, endurance and strength of the associated muscles in supporting that range. Then, of course, comparing this function to the opposite limb.  Symmetry is not everything, but it is definitely a major factor in safe efficient and injury free locomotion.

* Please give great thought to the part in the video where I discuss the drop phase in jumping. All too often we at looking for the propulsive mechanics and forget that a failure there will also be represented during the adaptive phase. Ankle sprains rarely occur from propulsive pushing off, they occur from a failure to properly reacquaint the foot to the ground on the following step.
-Dr. Shawn Allen, one of the gait guys.

In this study the authors noted:
"During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors. Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors. At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors."

And concluded that:
"Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function."

Med Sci Sports Exerc. 2016 Nov;48(11):2181-2189. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles. Kulmala JP1, Korhonen MT, Ruggiero L, Kuitunen S, Suominen H, Heinonen A, Mikkola A, Avela J.
https://www.ncbi.nlm.nih.gov/pubmed/27327033