tumblr_o471xcV05d1qhko2so1_1280.jpg
tumblr_o471xcV05d1qhko2so3_1280.jpg
tumblr_o471xcV05d1qhko2so2_1280.jpg
tumblr_o471xcV05d1qhko2so4_1280.jpg

Holy twisted tibias Batman! What is going here in this R sided knee pain patient?

In the 1st picture note this patient is in a neutral posture. Note how far externally rotated her right foot is compared to the left. Note that when you drop a plumbline down from the tibial tuberosity it does not pass-through or between the second and third metatarsals. Also note the incident left short leg
In the next picture both of the patients legs are fully externally rotated. Note the large disparity from right to left. Because of the limited extra rotation of the right hip this patient most likely has femoral retro torsion. This means that the angle of her femoral head is at a greater than 12° angle. We would normally expect approximately 40° of external Rotation. 4 to 6° is requisite for normal gait and supination.

In the next picture the patients knees are fully internally rotated you can see that she has an excessive amount of internal rotation on the right compare to left, confirming her femoral antetorsion.

When this patient puts her feet straight (last picture), her knees point to the inside causing the patello femoral dysfunction right greater than left. No wonder she has right-sided knee pain!

Because of the degree of external tibial torsion (14 to 21° considered normal), activity modification is imperative. A foot leveling orthotic with a modified UCB, also inverting the orthotic is helpful to bring her foot somewhat more to the midline (the orthotic pushes the knee further outside the sagittal plane and the patient internally rotate the need to compensate, thus giving a better alignment).

a note on tibial torsion. As the fetus matures, The tibia then rotates externally, and most newborns have an average of 0- 4° of internal tibial torsion. At birth, there should be little to no torsion of the tibia; the proximal and distal portions of the bone have little angular difference (see above: top). Postnatally, the tibia should twist outward (externally) a total of 15 degrees until adult values are reached between ages 8 and 10 years of 23° of external tibial torsion (range, 0° to 40°). more cool stuff on torsions here

Wow, cool stuff, eh?

tumblr_mmb0dfAEZC1qhko2so1_1280.jpg
tumblr_mmb0dfAEZC1qhko2so2_1280.jpg
tumblr_mmb0dfAEZC1qhko2so3_1280.jpg
tumblr_mmb0dfAEZC1qhko2so4_1280.jpg
tumblr_mmb0dfAEZC1qhko2so5_1280.jpg
tumblr_mmb0dfAEZC1qhko2so6_1280.jpg

So, What’s going on here?

Remember torsions and versions? If not, click here, here, here and here for a review. 

In the top left view, you are seeing the left foot in a neutral posture with the knee in the (relative) midline. Notice how the foot adducts? This person has INTERNAL TIBIAL TORSION. They also have hammer toes and a cavus (high) arch. 

In the top right, the foot is again in a neutral posture and the R foot is adducted EVEN FARTHER. Again, internal tibial torsion along with hammer toes and a cavus foot. For a hint, look at the tibial tuberosity; it should line up with an imaginary line drawn through the 2nd metatarsal. 

In the middle left picture I am fully internally rotating the R leg. Hmm, no internal rotation of the hip (note the knee goes little beyond midline). You need 4 degrees of internal rotation of the hip to walk normally and most folks have 40 degrees. This person has FEMORAL RETROTORSION.

In the middle right picture I am fully internally rotating the L leg. Hmm, no internal rotation of the hip here either; in fact, even less than the right. Again, FEMORAL RETROTORSION. 

In the bottom two pictures, the goniometer is aligned with the ASIS and tibial tuberosity. I am not sure if you can see it, but it is 18 degrees on the left and 20 on the right. Normally the Q angle is between 8 and 12 degrees. This person has developed compensatory GENU VALGUS.

Does it surprise you he has pain on the outside of his feet? How about knee pain?

So what does this mean?

  • he will have a decreased progression angle of the feet
  • he will externally rotate the feet to allow a more normal progression angle and “create” the internal rotation of the hip needed
  • this will place the knee out side the saggital plane and create a potential conflict at the knee
  • he will stress the ligaments at the medial knee secondary to his valgus deformity
  • he will increase the pressure on the lateral condles of the femur and lateral tibial plateau, leading to early degeneration

So what do you do?

  • normalize, to the best of his (and your) abilities, foot and lower extremity mechanics with manipulation, exercise, etc
  • ensure he has an adequate foot tripod with the tripod and EHB exercises
  • In his case, construct an orthotic, which will correct rearfoot pronation and yet not push the knee outside the saggital plane, by having a forefoot valgus post in place
  • educate him about proper footwear with an adequate toe box and not too much torsional rigidity (ie no motion control features)
  • follow him at regular intervals to make sure he doesn’t fall off the turnip truck
The Gait Guys. Making it real, every day, every post, every PODcast.
all material copyright 2013 The Gait Guys/ The Homunculus Group.
tumblr_mhnkjc4Mdl1qhko2so1_1280.jpg
tumblr_mhnkjc4Mdl1qhko2so2_250.jpg
tumblr_mhnkjc4Mdl1qhko2so3_400.gif

Yes, we are all twisted: Part 1

Developmentally speaking, that is.  Version and Torsion are the words we need to know. There are 3 normal versional changes that take place in the lower extremity development from infant to adult: rotation of the talar head/neck, tibial rotation, and femoral rotation  (see above). 

So, what is the difference between a torsion and version?

A version is a normal variation in the “twistedness” of a limb (longitudinally speaking) between its proximal and distal portions, representing a normal range of development (see femur above) .  An example is the head and neck of the femur has an angle of 8-12 degrees with respect the femoral condyles.

A torsion is the same condition with the amount of twist 1 to 2 standard deviations greater. An example is when the angle of the femoral neck and greater than 15 degrees, the condition of femoral ante torsion exists (see photo above).

There are at least 3 reasons you need to understand about developmental torsions and versions that occur with growth:

  1. Since they occur in the transverse (horizontal) plane, they affect the progression angle of the foot and thus gait
  2. They affect available ranges of motion of a limb (ex the femur needs to internally rotate 4-6 degrees for normal gait) and can cause pain and/or gait alterations
  3. They can affect the coronal (frontal) plane orientation of the lower limb, which can affect gait and shoe choices. A Rothbart foot type with an elevated 1st metatarsal head will often result in a varus (or inverted) position of the forefoot with respect to the rear foot.

In this series, we will explore these 3 major versional changes, one at a time.

The Gait Guys. Bald? Yes! Good looking? You bet! Yes, we are a little more twisted than most folks : )

All material copyright 2013 The Gait Guys/ The Homunculus Group. All rights reserved.  Please ask before recycling our stuff!