Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

Attached is an older video from a few years back , it is very similar in execution to the heel-rise ball squeeze exercise which is the precursor to this more functional engagement as shown in this video today.

The important premise is that you have to have command of the entire posterior compartment if you are to get safe, effective, efficient and adequate ankle plantarflexion. As we have discussed many times, if you do not have the requisite skills as shown in this video you are in trouble and ankle sprains and other functional pathologies are not unlikely to visit you. Additionally, without requisite posterior compartment endurance and an ability to engage what I like to refer to as "top end" strength in the heel rise is an asymmetrial loading issue and can lead to compensatory adaptations up the kinetic chain. Make no mistake, the load will go somewhere, and thus the work will be done somewhere. In this video you should be able to clearly see and understand that one must be able to achieve top end posturing and have command of lateral and medial forefoot loading responses and challenges if clean forward function and power is to be achieved, and injuries from extremes of motion medially and laterally are to be avoided. Furthermore, as eluded to here and in several of our podcasts (and in the study included below), an inability to achieve top end posturing will lead to changes in forefoot loading, may spill over into endurance challenges prematurely in the posterior mechanism, and create changes in the timing of the gait cycle (things like premature or delayed heel rise, premature or delayed forefoot loading, recruitment of other components of the posterior chain just to name a few). This parsing and sharing of loads and responsibilities is laid out in the Kulmala study referenced today. The study could be extrapolated to say, I believe, that particularly in sprinting, a failure to achieve top end heel rise through effective posterior mechanism contraction, will change the load sharing between the posterior compartment and the quadriceps. After all, if the calf is weak, the ankle is not in as much plantarflexion, this could mean more knee flexion and thus raise demands on the quadriceps, logically changing knee mechanics. This is exactly why we spend so much time at every patient visit looking for full range of motion at the joints and then determine the skill, endurance and strength of the associated muscles in supporting that range. Then, of course, comparing this function to the opposite limb. Symmetry is not everything, but it is definitely a major factor in safe efficient and injury free locomotion.

* Please give great thought to the part in the video where I discuss the drop phase in jumping. All too often we at looking for the propulsive mechanics and forget that a failure there will also be represented during the adaptive phase. Ankle sprains rarely occur from propulsive pushing off, they occur from a failure to properly reacquaint the foot to the ground on the following step.
-Dr. Shawn Allen, one of the gait guys.

In this study the authors noted:
"During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors. Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors. At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors."

And concluded that:
"Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function."

Med Sci Sports Exerc. 2016 Nov;48(11):2181-2189. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles. Kulmala JP1, Korhonen MT, Ruggiero L, Kuitunen S, Suominen H, Heinonen A, Mikkola A, Avela J.
https://www.ncbi.nlm.nih.gov/pubmed/27327033

https://youtu.be/8T9UzOaYxmo

the gait guys
#gait, #gaitproblems, #thegaitguys, #gaitanalysis, #heelrise, #calfstrength, #toeoff, #forefootloading, #metatarsalgia, #inversionsprain


Ankle spains and hip abductors

We see it ALL THE TIME. But sometimes it is nice to point out the obvious, just in case you are not looking for it.
“Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.”-Friel et al
Dr. Allen: if the hip abductors are weak, the leg will posture more adducted (ie, cross over type pattern) and this places the foot more directly below the body midline plumb, this will posture the foot in inversion and thus at greater risk for future inversion sprains.  This sets up the vicious cycle of hip abductor weakness, frontal plane drift of pelvis, inversion of the foot and more ankle sprain risks/events.  The cycle must be broken. The hip must be addressed. That lateral chain must be restored all the way up from the foot.  All stuff you likely already know, but good to find another study to validate.

Dr. Allen

J Athl Train. 2006; 41(1): 74–78.PMCID: PMC1421486Ipsilateral Hip Abductor Weakness After Inversion Ankle SprainKaren Friel,Nancy McLean,Christine Myers, and Maria Caceres
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1421486/

Can you see the problem in this runner’s gait ?

You should be able see that they are heel impacting heavy on the outside of the rear foot, and that they are doing so far laterally, more than what is considered normal.  
This is a video of someone with a rear foot varus deformity.
These folks typically have a high arched foot, typically more rigid than flexible, and they are often paired with a forefoot valgus.  
Q: Do you think it might be important as a shoe fitter to know this foot type ?
A: Yes
Q.Should they be put in a shoe with a soft lateral crash zone at the heel ? 
A: No, absolutely not. Why would you want to keep this person deeper and more entrenched on the lateral heel/foot ?!
This foot type has a difficult time progressing off of the lateral foot. The lateral strike pattern and the tendency for the varus rear-foot (inverted)  keeps this person on the lateral aspect of the foot long into midstance.  This eats up time when they should be gradually progressing over to the medial forefoot so that they can get to an effective and efficient medial (big toe) toe off.  This gait type is typically apropulsive, they are not big speed demons and short bursts of acceleration are difficult for these folks much of the time. Combine this person with some torsional issues in  the tibia or femur and you have problems to deal with, including probably challenges for the glutes and patellar tracking dysfunction. What to see some hard, tight IT Bands ?These folks are often the poster child for it. Good luck foam rolling with these clients, they will hate you for recommending it !
They are typically poor pronators so they do not accommodate to uneven terrain well.  Because they are more on the outside of the foot, they may have a greater incidence or risk for inversion sprains. You may choose to add the exercise we presented on Monday (link  here) to help them as best as possible train some improved strength, awareness and motor patterns into their system. In some cases, but only when appropriate, a rear foot post can be used to help them progress more efficiently and safely. 
These foot types typically have dysfunction of the peronei (amongst other things). A weak peroneus longus can lead to a more dorsiflexed first metatarsal compromising the medial foot tripod stability and efficiency during propulsion while also risking compromise to the first metatarsaophalangeal (1st MTP) joint and thus hallux complications.  Additionally, a weak peroneus brevis can enable the rear foot to remain more varus. This muscle helps to invert the rearfoot and subtalar joints. This weakness can play out at terminal swing because the rear foot will not be brought into a more neutral posture prior to the moment of heel/foot strike (it will be left more varus) and then it can also impair mid-to-late midstance when it fires to help evert the lateral column of the foot helping to force the foot roll through to the big toe propulsive phase of terminal stance.  (* children who have these peroneal issues left unaddressed into skeletal maturity are more likely to have these rearfoot varus problems develop into anatomic fixed issues…… form follows function.)
You can see in the video the failed attempt to become propulsive. The client speeds over to the medial foot/big toe at the very last minute but it is largely too late. Sudden and all out pronation at the last minute is also fraught with biomechanical complications.
One must know their foot types. If you do not know what it is you are seeing, AND know how to confirm it on examination you will not get your client in the right shoe or give them the right homework.
* caveat: the mention of Monday’s exercise for this foot type for everyone with Rearfoot varus is not a treatment recommendation for everyone with the foot type. For some people this is the WRONG exercise or it might need modifications. Every case is different. The biomechanics all the way up need to be considered. Medicine is not a compartmentalized art or science. 
Shawn and Ivo, The Gait Guys

 

EHB: Extensor Hallucis Brevis

Did you know that the EHB (extensor hallucis brevis) the topic of today’s video tutorial, originates off of the forepart of the medial aspect of calcaneus & lateral talocalcaneal ligament. It is just above the bulk origin of the EDB (extensor digitorum brevis). It is frequently torn/strained in ankle inversion sprains and frequently goes undiagnosed. It can be torn/avulsed from the bone if the inversion sprain is focused below the lateral ankle joint. This occurs mostly when the foot is more plantarflexed before the inversion event. A foot cannot afford to have an impaired big toe ! Don’t miss this one !

Did you know that the EHB (extensor hallucis brevis) the topic of today’s video tutorial, originates off of the forepart of the medial aspect of calcaneus & lateral talocalcaneal ligament. It is just above the bulk origin of the EDB (extens 
 or digitorum brevis). It is frequently torn/strained in ankle inversion sprains and frequently goes undiagnosed. It can be torn/avulsed from the bone if the inversion sprain is focused below the lateral ankle joint. This occurs mostly when the foot is more plantarflexed before the inversion event. A foot cannot afford to have an impaired big toe ! Don’t miss this one !

Did you know that the EHB (extensor hallucis brevis) the topic of today’s video tutorial, originates off of the forepart of the medial aspect of calcaneus & lateral talocalcaneal ligament. It is just above the bulk origin of the EDB (extens

or digitorum brevis). It is frequently torn/strained in ankle inversion sprains and frequently goes undiagnosed. It can be torn/avulsed from the bone if the inversion sprain is focused below the lateral ankle joint. This occurs mostly when the foot is more plantarflexed before the inversion event. A foot cannot afford to have an impaired big toe ! Don’t miss this one !
A case of the non-resolving ankle sprain.  Things to think about when the ankle and foot just do not fully come around after a sprain.   
 Gait Guys, 
 A while back I had a severe ankle sprain while trail running.  As I stepped on a rock my toes pointed downward, my ankle was rolled in and I felt a pop. This was follow by a lot of swelling and bruising both on the inside and outside of my ankle.  Being experienced with ankle sprains, I jumped on the initial treatment immediately. The reduction in swelling and bruising lead me to believe that I was in for a 4-5 week recovery, then I would be back at what I love doing. I was proven wrong:   
  1.          Initial treatment consisted of immobilization, icing, and a very high dose of Ibuprofen (3 days only). After a couple weeks of this I began stretching, massage and trying to get into some modified activities as the pain allowed me to. I was able to  do some hiking but running was too painful. 
  2.          After 6 weeks, I was still having pain in the posterior tibial tendon area as well as the deltoid ligament area. I tried running but, I was met with severe pain beginning in the middle of the gait cycle through  the push off. I saw a PA at this time and was told to give it more rest. For the next few weeks I wore a soft brace and spent most of my time in a chair. 
  3.          By week 9, there was no improvement. I could walk fine but, I had the same pain when I tried to run. I visited the PA again and was put in a walking cast and had an MRI. The MRI should a low grade deltoid and ATFL sprain as well as a bruised bone. I spent 2 weeks in the walking cast then returned to the soft cast for another week. During this time I did nothing besides give it rest. 
  4.          At week 11, I did not see a noticeable improvement. I still had a sharp pain in my posterior tibial tendon area and deltoid area during the middle of my gait (when trying to run). At this time, I had another visit with the PA. After looking at my MRI more closely, he saw fluid buildup behind my talus. He thinks that I had an impact injury to my Os Trigonum. He also noticed that I had very limited dorsiflexion.  He has advised me to stretch and give it a few more weeks. If it’s not going in a positive direction he recommended a cortisone shot. 
 As it stands today at week 12, in a dorsiflexion position, I have a sharp pain in what feels like my Achilles tendon and posterior tibial tendon area (the MRI shows these are intact). I also have a lot of tenderness in the deltoid area. Walking, I am almost pain free but as soon as I begin to run, the pain starts in the areas described above. This is the first injury I have ever had where I haven’t seen a steady improvement when recovering (maybe I am just getting old). The pain I am having now when trying to running is the same as it was at week 4. This really concerns me. 
 I guess my question is, where do I go from here? Do I keep doing what I am doing? Should I seek a second opinion?  Any help or guidance you could provide would be greatly appreciated. 
 On a side note, your blog has helped me to get though the last 12 run-less weeks without losing my mind or falling into a deep depression.  You guys do some great stuff.  Keep up the good work! 
 Best Regards, 
 MR 
 ____________________ 
   Dear MR:   
   Somehow we missed this email. Sorry about that.   
   Whenever things are not resolving with reasonable intervention one must think of two things: either the injury was severe or the diagnosis is incorrect.   
   Without seeing you we are unable to determine either. But here are our thoughts.   
   The Os Trigonum syndrome is a good thought. It seems to be in the correct area of your complaint. These “Os” bones can be embedded in tendon or soft tissue and they can be fixed to the posterior talus by either bone or a cartilagenous bridge. It is possible for this to be your problem if the inversion event was severe enough although it is not that common in this described mechanism.   
   One must also be suspect of osseous compression of the medial talus against the medial calcaneus, which will bring thoughts of a posterior subtalar facet fracture. We pulled up an article we read a few years ago on this issue  (click here) , the article is entitled, “Pseudo os trigonum sign: missed posteromedial talar facet fracture”. Obviously this needs to be considered in your case since there are similar components in area and symptom of your complaints. Posteromedial talar facet fracture (PMTFF) is a rare injury, sparsely reported in the literature and it must be chased as a diagnosis of suspicion when all other clinical presentations have not panned out. Damage to the sustentaculum tali must also be assessed, as this too can be fractured.  Osteochondral defects are also always on the list in violent inversion events; they are classically seen anteromedially and posteriolaterally at the ankle mortise joint.   
   Something else that is often missed in ankle inversion sprains is avulsion or rupture of the extensor digitorum brevis on the lateral foot. As the rearfoot inverts and forefoot plantarflexes the EDB is tensioned to the point of tearing. Although you seem to have no symptoms in this area it can never be overlooked. These are easy to discern from the lateral ligamentous structure damage because the areas are clearly separate from eachother.  Look for tenderness down into the top of the metatarsals into the forefoot. Also test for weakness and pain of toe extension.   
   So, lots to consider here in this case. When things to not resolve you have to start looking for less common problems and damage.  We would love to hear how you are doing MR. Drop us a line.   
   Shawn and Ivo……. also geeks of orthopedics.  We paid the piper long ago.

A case of the non-resolving ankle sprain.  Things to think about when the ankle and foot just do not fully come around after a sprain.

Gait Guys,

A while back I had a severe ankle sprain while trail running.  As I stepped on a rock my toes pointed downward, my ankle was rolled in and I felt a pop. This was follow by a lot of swelling and bruising both on the inside and outside of my ankle.  Being experienced with ankle sprains, I jumped on the initial treatment immediately. The reduction in swelling and bruising lead me to believe that I was in for a 4-5 week recovery, then I would be back at what I love doing. I was proven wrong:  

1.       Initial treatment consisted of immobilization, icing, and a very high dose of Ibuprofen (3 days only). After a couple weeks of this I began stretching, massage and trying to get into some modified activities as the pain allowed me to. I was able to  do some hiking but running was too painful.

2.       After 6 weeks, I was still having pain in the posterior tibial tendon area as well as the deltoid ligament area. I tried running but, I was met with severe pain beginning in the middle of the gait cycle through  the push off. I saw a PA at this time and was told to give it more rest. For the next few weeks I wore a soft brace and spent most of my time in a chair.

3.       By week 9, there was no improvement. I could walk fine but, I had the same pain when I tried to run. I visited the PA again and was put in a walking cast and had an MRI. The MRI should a low grade deltoid and ATFL sprain as well as a bruised bone. I spent 2 weeks in the walking cast then returned to the soft cast for another week. During this time I did nothing besides give it rest.

4.       At week 11, I did not see a noticeable improvement. I still had a sharp pain in my posterior tibial tendon area and deltoid area during the middle of my gait (when trying to run). At this time, I had another visit with the PA. After looking at my MRI more closely, he saw fluid buildup behind my talus. He thinks that I had an impact injury to my Os Trigonum. He also noticed that I had very limited dorsiflexion.  He has advised me to stretch and give it a few more weeks. If it’s not going in a positive direction he recommended a cortisone shot.

As it stands today at week 12, in a dorsiflexion position, I have a sharp pain in what feels like my Achilles tendon and posterior tibial tendon area (the MRI shows these are intact). I also have a lot of tenderness in the deltoid area. Walking, I am almost pain free but as soon as I begin to run, the pain starts in the areas described above. This is the first injury I have ever had where I haven’t seen a steady improvement when recovering (maybe I am just getting old). The pain I am having now when trying to running is the same as it was at week 4. This really concerns me.

I guess my question is, where do I go from here? Do I keep doing what I am doing? Should I seek a second opinion?  Any help or guidance you could provide would be greatly appreciated.

On a side note, your blog has helped me to get though the last 12 run-less weeks without losing my mind or falling into a deep depression.  You guys do some great stuff.  Keep up the good work!

Best Regards,

MR

____________________

Dear MR:

Somehow we missed this email. Sorry about that.

Whenever things are not resolving with reasonable intervention one must think of two things: either the injury was severe or the diagnosis is incorrect.

Without seeing you we are unable to determine either. But here are our thoughts.

The Os Trigonum syndrome is a good thought. It seems to be in the correct area of your complaint. These “Os” bones can be embedded in tendon or soft tissue and they can be fixed to the posterior talus by either bone or a cartilagenous bridge. It is possible for this to be your problem if the inversion event was severe enough although it is not that common in this described mechanism.

One must also be suspect of osseous compression of the medial talus against the medial calcaneus, which will bring thoughts of a posterior subtalar facet fracture. We pulled up an article we read a few years ago on this issue (click here), the article is entitled, “Pseudo os trigonum sign: missed posteromedial talar facet fracture”. Obviously this needs to be considered in your case since there are similar components in area and symptom of your complaints. Posteromedial talar facet fracture (PMTFF) is a rare injury, sparsely reported in the literature and it must be chased as a diagnosis of suspicion when all other clinical presentations have not panned out. Damage to the sustentaculum tali must also be assessed, as this too can be fractured.  Osteochondral defects are also always on the list in violent inversion events; they are classically seen anteromedially and posteriolaterally at the ankle mortise joint.

Something else that is often missed in ankle inversion sprains is avulsion or rupture of the extensor digitorum brevis on the lateral foot. As the rearfoot inverts and forefoot plantarflexes the EDB is tensioned to the point of tearing. Although you seem to have no symptoms in this area it can never be overlooked. These are easy to discern from the lateral ligamentous structure damage because the areas are clearly separate from eachother.  Look for tenderness down into the top of the metatarsals into the forefoot. Also test for weakness and pain of toe extension.

So, lots to consider here in this case. When things to not resolve you have to start looking for less common problems and damage.  We would love to hear how you are doing MR. Drop us a line.

Shawn and Ivo……. also geeks of orthopedics.  We paid the piper long ago.

Gait / Running Injury: Misdiagnosed Big Toe Extensor Hallucis Brevis tear in a distance runner from a simple ankle sprain.

* Sorry for the less than perfect video. Need some editing time.  Watch from 0:32 onwards for the topic at hand.


This young man, State caliber cross country runner, came in to see us after some unsuccessful treatment for an inversion ankle sprain several weeks prior. Although his swelling and range of motion had improved he was still having pain despite treatment.

On examination it was revealed that there was no loss of integrity of the lateral ligamentous restraints, no joint gapping was noted and the ligaments were non-tender. There was no swelling. Balance was clean. Even the immediate local lateral ankle muscular restraints, largely peronei, were competent with skill, endurance and strength assessment.

After further pointed discussion, after the ankle was cleared as a causative /symptomatic generator, we insisted the patient be more specific with his pain region. After requesting he palpate around to focalize the area of complaint this time he pointed not to his lateral ankle but rather pointed to the lateral dorsum of the foot over the fleshy mass of the short extensor muscle group just distal and anterior to the lateral malleolus. Inversion of the ankle was pain free but inversion of the forefoot on the rearfoot reproduced his pain pin point to the EHB (extensor hallucis origin area).

Upon reassessing his gait it was now obvious that he was unable to engage the left hallux (big toe) extensors. You can clearly see his lack of toe extension (lift) on the video at 0:32 seconds. When consciously requested to do so it immediately reproduced his pain ! If you look very carefully, that the hallux was not extending during swing phase through midstance contact phases of gait.

After specific muscle testing found only the EHB (extensor hallucis brevis) weak and not the EDB at all (extensor digitorum brevis) we began a few minutes of manual therapy to the EHB. Within ~5 -10 minutes the EHB was painfree and he could engage the muscle again actively. The muscle was clearly healed from it low grade strain, he was just unable to reactivate it during the gait cycle. Post treatment, he was able to walk immediately with much less pain and with ability to use the EHB in gait.

We followed up a second visit with him but he was pain free and was discharged from care. There were no gait compensations and screens for functional sensory motor compensations were unremarkable. Case closed.

Good results come from a precision diagnosis which can only come from a sound base of knowledge of anatomy, physiology and biomechanics …. when it comes to this kinda stuff.  Would you have picked this up on someone’s gait ? We didn’t at first.  Use your clinical examination to drive your suspicions in your gait analysis. What you see is not always what you get during gait analysis, this easily could have been a similar presentation of a hallux limitus.

Details, details, details. The devil is in the details, The proof is in the pudding……. etc.

Shawn & Ivo