Podcast 161: Central pattern generators: Why and how movement goes bad

Hello, World!

*The Masterclass in Gait, with the Gait Guys

join us monthly at: https://www.patreon.com/thegaitguys for the monthly Masterclass installment hour. Formal presentations, slides, videos, demos, deep dives on topics you will not hear anywhere but here ! We hit the gait, biomechanics, neurology and orthopedics of all of the gait topics we present. This is not for the weak and timid, this is the deep dive you have been waiting for. Join us while we turn our normal 50 minute presentations into 3.5 hours on a regular basis ! The 40$ Patreon level will give you 50% off the Masterclass and also get you the $20, $10, and 5$ Patreon level content. What a deal ! It will not be here forever so lock in now !

Or, you can get less for your money and just buy our Monthly Masterclass at our VIMEO page: https://vimeo.com/ondemand/thegaitmasterclass


Links to find the podcast:
Look for us on Apple Podcasts, Google Play, Podbean, PlayerFM, RADIO and more.
Just Google "the gait guys podcast".
_______________________________________________________________________________
Our Websites:
www.thegaitguys.com
Find Exclusive content at: https://www.patreon.com/thegaitguys
doctorallen.co
summitchiroandrehab.com
shawnallen.net

Our website is all you need to remember. Everything you want, need and wish for is right there on the site.
Interested in our stuff ? Want to buy some of our lectures or our National Shoe Fit program? Click here (thegaitguys.com or thegaitguys.tumblr.com) and you will come to our websites. In the tabs, you will find tabs for STORE, SEMINARS, BOOK etc. We also lecture every 3rd Wednesday of the month on onlineCE.com. We have an extensive catalogued library of our courses there, you can take them any time for a nominal fee (~$20).

Our podcast is on iTunes and just about every other podcast harbor site, just google "the gait guys podcast", you will find us.

Where to find us, the podcast Links:
Apple podcasts:
https://itunes.apple.com/us/podcast/the-gait-guys-podcast/id559864138?mt=2

Google Play:
https://play.google.com/music/m/Icdfyphojzy3drj2tsxaxuadiue?t=The_Gait_Guys_Podcast

Links to find today's show:
https://traffic.libsyn.com/secure/thegaitguys/pod._163_June_21_-_62120_9.41_AM.mp3
https://thegaitguys.libsyn.com/central-pattern-generators-why-and-how-movement-goes-bad-0
https://directory.libsyn.com/episode/index/id/14905823

When the nervous system breaks down, gait becomes more primitive.

Whether we are looking at an injury or a neurological disorder, when something goes awry, we can almost always predict that the gait pattern will start to decompose. We can learn a lot about gait from watching this kiddo walk. An immature nervous system is very similar to one which is compensating meaning there will often "cheat" around a more proper and desirable movement pattern; we often resort to a more primitive state when challenges beyond our ability are presented. This is very common when we lose some aspect of proprioception, particularly from some peripheral joint or muscle, which in turn, leads to a loss of cerebellar input (and thus cerebellar function). Remember, the cerebellum along with the upper brainstem is a temporal pattern generating center so a loss of cerebellar sensory input leads to poor pattern generation output.

Watch this clip several times and then try and note each of the following:

  • Wide based gait; this is because proprioception is still developing (joint and muscle mechanoreceptors and of course, the spino cerebellar pathways and motor cortex)

  • increased progression angle of the feet: this again is to try and retain stability. External rotation allows them to access a greater portion of the glute max and the frontal plane (engaging an additional plane is always more stable).

  • Shortened step length: this keeps the center of gravity close to the body and makes corrections for errors that much easier This immature DEVELOPING system is very much like a mature system that is REGRESSING. This is a paramount learning point !)

  • Decreased speed of movement; this allows more time to process proprioceptive clues, creating accuracy of motion

  • Sometimes we see increased arm and accessory movements, again to try and increase proprioceptive input and provide additional stability.


Proprioceptive clues are an important aspect of gait analysis, in both the young and old, especially since we tend to revert back to an earlier phase of development when we have an injury or dysfunction.

We will be talking about these principals along with 2 cases of neurological disorders and more this Wednesday evening for our "3rd Wednesdays" talk on online.com: Biomechanics 321. 5 PST, 6MST, 7CST, 8EST


Dr Ivo Waerlop, one of The Gait Guys

#gaitanalysis #decompositionofgait #proprioception #neurologicaldisorder #thegaitguys






An Alternate View of Crawling and Quadrupedal Motor Patterns: A Correlation to Free Solo Mountain Climbers ?

The one you haven’t heard about.

On janurary 15, 2014 Alex Honnold, Free-Soloed El Sendero Luminoso (The Shining Path) in El Potrero Chico, Mexico in a little over 3 hours. The climb rises 2500 feet to the summit of El Toro. At the time, it was considered to possibly be the most difficult rope-less climb in history, . . . until El Capitan.

Quadruped Patterns: Part 1, Redux
If you have been with us here at The Gait Guys for awhile, you will have read some articles where we discuss quadrupedal gait (link: Uner Tan Syndrome) and also heard us talk about CPG’s (Central Pattern Generators) which are neural networks that produce rhythmic patterned outputs without sensory feedback. You will have also read many of our articles on arm swing and how they are coordinated with the legs and opposite limb in a strategic fashion during gait and running gaits.

Lets get into it, full blog post here,

https://www.thegaitguys.com/thedailyblog/an-alternate-view-of-crawling-and-quadrupedal

An Alternate View of Crawling and Quadrupedal Motor Patterns: A Correlation to Free Solo Mountain Climbers ?

Quadruped Patterns: Part 1

In the last 3 years, if you have been with us here at The Gait Guys that long, you will have read some articles where we discuss quadrupedal gait (link: Uner Tan Syndrome) and also heard us talk about CPG’s (Central Pattern Generators) which are neural networks that produce rhythmic patterned outputs without sensory feedback. You will have also read many of our articles on arm swing and how they are coordinated with the legs and opposite limb in a strategic fashion during gait and running gaits. Through these articles, we have also eluded to some of the fruitless aspects of focusing solely on retraining arm swing in runners because of the deep neurologic interconnectedness to the lower limbs and to the CPG’s.
IF you are interested in any of these articles we have written please feel free to visit our blog and type in the appropriate words (Uner Tan Syndrome, arm swing, cerebellum, cross over gait) into the Search box on the blog.

Here we briefly look at interconnected arm and leg function in crawling mechanics in a high functioning human (as compared to the Uner Tan Syndrome) in arguably the best solo free climber in the world, Alex Honnold. Here we will talk about the possible neurologic differences in climbers such as Alex as compared to other quadruped species. Primarily, there is suspect of an existing shift in the central pattern generators because of the extraordinary demand on pseudo-quadrupedal gait of climbing because of the demand on the upper limbs and their motorneuron pools to mobilize the organism up the mountain. The interlimb coordination in climbing and crawling biomechanics shares similar features to other quadrupeds, both primate and non-primate, because of similarities in our central pattern generators (CPG’s). New research has however determined that the spaciotemportal patterns of spinal cord activity that helps to mediate and coordinate arm and leg function both centrally, and on a cord mediated level, significantly differ between the quadruped and bipedal gaits. In correlation to climbers such as Alex however, we need to keep it mind that the quadrupedal demands of a climber (vertical) vastly differ in some respects to those of a non-vertical quadrupedal gait such as in primates and those with Uner Tan Syndrome. This is obvious to the observer not only in the difference in quadrupedal “push-pull” that a climber uses and the center-of-mass (COM) differences. To be more specific, a climber keeps the COM within the 4 limbs and close to the same surface plane as the hands and feet (mountain) while a primate, human or Uner Tan person will “tent up” the pelvis and spine from the surface of contact.

What some of the research has determined is that in quadrupeds the lower limbs displayed reduced orientation yet increased ranges of kinematic coordination in alternative patterns such as diagonal and lateral coordination. This was clearly different to the typical kinematics that are employed in upright bipedal locomotion. Furthermore, in skilled mountain climbers, these lateral and diagonal patterns are clearly more developed than in study controls largely due to repeated challenges and subsequent adaptive changes to these lateral and diagonal patterns. What this seems to suggest is that there is a different demand and tax on the CPG’s and cord mediated neuromechanics moving from bipedal to quadrupedal locomotion. There seemed to be both advantages and disadvantages to both locomotion styles. Moving towards a more upright bipedal style of locomotion shows an increase in the lower spine (sacral motor pool) activity because of the increased and different demands on the musculature however at the potential cost to losing some of the skills and advantages of the lateral and diagonal quadrupedal skills. Naturally, different CPG reorganization is necessary moving towards bipedalism because of these different weight bearing demands on the lower limbs but also due to the change from weight bearing upper limbs to more mobile upper limbs free to not only optimize the speed of bipedalism but also to enable the function of carrying objects during locomotion.

The take home seems to suggest that gait retraining is necessary as is the development of proper early crawling and quadruped locomotor patterns. Both will tax different motor pools within the spine and thus different central pattern generators (CPG). A orchestration of both seems to possibly offer the highest rewards and thus not only should crawling be a part of rehab and training but so should forward, lateral and diagonal pattern quadrupedal movements, on varying inclines for optimal benefits. Certainly we need to do more work on this topic, the research is out there, but correlating the quad and bipedal is limited. We will keep you posted. Next week we will follow up on this quadrupedal topic with a video that will blow your mind ! So stay tuned !

Shawn and Ivo
The Gait Guys


Scand J Med Sci Sports. 2011 Oct;21(5):688-99. Idiosyncratic control of the center of mass in expert climbers. Zampagni ML, Brigadoi S, Schena F, Tosi P, Ivanenko YP.

J Neurophysiol. 2012 Jan;107(1):114-25. Features of hand-foot crawling behavior in human adults. Maclellan MJ, Ivanenko YP, Cappellini G, Sylos Labini F, Lacquaniti F.

Is there a need for "Gait Retraining'?...We think so

photo source: https://commons.wikimedia.org/wiki/File:Severe_(Tönnis_grade_3)_osteoarthritis_of_the_hip.jpg

photo source: https://commons.wikimedia.org/wiki/File:Severe_(Tönnis_grade_3)_osteoarthritis_of_the_hip.jpg

There seems to be some controversy with regards to gait retraining. Some folks seem to believe that it should be “left to itself” and they are fully compensated already (1). Perhaps this is true…or not. We have not seen any studies that compare gait retraining vs non gait retraining as a whole, but there seems to be plenty for specific conditions (2). We all see folks AFTER THE FACT and seek to correct the problems and reverse, halt or slow the progression of further pathology. That seems to be what many of us do.

This recent study (3) looks ate altered loads and muscle recruitment patterns in patients with osteoarthritis. they conclude:

“This study documents alterations in hip kinematics and kinetics resulting in decreased hip loading in patients with hip OA. The results suggested that patients altered their gait to increase medio-lateral stability, thereby decreasing demand on the hip abductors. These findings support discharge of abductor muscles that may bear clinical relevance of tailored rehabilitation targeting hip abductor muscles strengthening and gait retraining.”

There is substantial evidence that hip pathomechanics lead to osteoarthritis (4, 5). Wouldn’t it make sense to assist in altering motor patterns and correct those biomechanical faults before it becomes a problem? Lets change our focus (if we haven’t already) and concentrate on skill, endurance and strength, in that order for the betterment of ourselves, our patients and humanity.

  1. Nigg BM, Baltich J, Hoerzer S, Enders H. Running shoes and running injuries: mythbusting and a proposal for two new paradigms: “preferred movement path” and “comfort filter” Br J Sports Med. 2015 Jul; doi: 10.1136/bjsports-2015-095054. bjsports - 2015-095054. 

  2. Davis IS, Futrell E. Gait Retraining: Altering the Fingerprint of Gait. Physical medicine and rehabilitation clinics of North America. 2016;27(1):339-355. doi:10.1016/j.pmr.2015.09.002. FREE FULL TEXT

  3. Meyer CAG, Wesseling M, Corten K, Nieuwenhuys A, Monari D5, Simon JP, Jonkers I, Desloovere K. Hip movement pathomechanics of patients with hip osteoarthritis aim at reducing hip joint loading on the osteoarthritic side. Gait Posture. 2018 Jan;59:11-17. doi: 10.1016/j.gaitpost.2017.09.020. Epub 2017 Sep 22.

  4. Christian Egloff, Thomas Hügle, Victor Valderrabano: Biomechanics and pathomechanisms of osteoarthritis Swiss Med Wkly. 2012;142:w13583 FREE FULL TEXT

  5. https://www.the-rheumatologist.org/article/get-out-of-your-oa-box/?singlepage=1&theme=print-friendly

People who are injured move differently

Like we have said before, often times when folks are injured they often lose cortical function (afferent input) from a particular area, and their gait becomes more primitive, often taking a broader base, slower movement, increased amplitude of movement and sometimes requiring assistance or something to help them balance, like our post here

"Findings suggest that movement variability in those with a musculo-skeletal injury differs from uninjured individuals. Interestingly, there was an overall trend toward greater movement variability being associated with the injured groups, although it should be noted that this trend was not consistent across all subcategories (eg, injury type). "

Baida SR, Gore SJ, Franklyn-Miller AD, Moran KA. Does the amount of lower extremity movement variability differ between injured and uninjured populations? A systematic review. Scand J Med Sci Sports. 2018 Apr;28(4):1320-1338. doi: 10.1111/sms.13036. Epub 2018 Feb 14. (

What specific movement pattern(s) does a person with chronic ankle instability have?

image source: https://en.wikipedia.org/wiki/Ligament

image source: https://en.wikipedia.org/wiki/Ligament

...it is unique and depends on their compensation

 

"The researchers concluded that multiple distinct movement patterns were found in a high percentage of CAI subjects and each person likely incorporates unique positions and loads that contribute to the chronic nature of instability. Additionally, the data revealed distal joint stiffness was lower in those with CAI than controls generally, while proximal joint stiffness was greater than controls. These data support the theory that the hop plays a vital role in controlling lower extremity movement in CAI subjects."

 

Hopkins JT, Son SJ, Kim J, et al. Joint Stiffness Alterations, Grouped by Movement Strategy, in Chronic Ankle Instability.

http://lermagazine.com/special-section/conference-coverage/identifying-cai-through-specific-movement-patterns

 

Sending a V16, with tears of joy. More neurology of movement: Climbing impossible stuff.

This badass just did a V16 here in this video, translation, the Mount Everest of bouldering. He deserved to cry.

Spin this picture 180 and he is crawling, finding points of “fixation”. What is neat about climbing is that you can have one, two, three or four points of fixation, unlike walking (one or two points) and crawling (two, three or four points of fixation). The difference in climbing is that gravity is a bear, wearing you down, little by little. A deep similarity in climbing to any variety of crawling is that both involve pulling and pushing, compressing and extending over fixation points. Other common principles are those of fixation, stability, mobility and neurologic crawling patterns in order to progress.
Some research has determined that in quadrupeds the lower limbs displayed reduced orientation yet increased ranges of kinematic coordination in alternative patterns such as diagonal and lateral coordination.  

This was clearly different to the typical kinematics that are employed in upright bipedal locomotion. Furthermore, in skilled mountain climbers, these lateral and diagonal patterns are clearly more developed than in study controls largely due to repeated challenges and subsequent adaptive changes to these lateral and diagonal patterns.  What this seems to suggest is that there is a different demand and tax on the CPG’s (central pattern generators) and cord mediated neuromechanics moving from bipedal to quadrupedal locomotion. There seemed to be both advantages and disadvantages to both locomotion styles. Moving towards a more upright bipedal style of locomotion shows an increase in the lower spine (sacral motor pool) activity because of the increased and different demands on the musculature however at the potential cost to losing some of the skills and advantages of the lateral and diagonal quadrupedal skills. Naturally, different CPG reorganization is necessary moving towards bipedalism because of these different weight bearing demands on the lower limbs but also due to the change from weight bearing upper limbs to more mobile upper limbs free to not only optimize the speed of bipedalism but also to enable the function of carrying objects during locomotion. 

This brief excerpt was taken from one of the many articles I have written on the complex biomechanics and neurology of climbing and movement. Search for it all on our blog, thegatiguys.com

-Dr. Shawn Allen, the other gait guy
 

Great, FREE FULL TEXT article on the hip.an EXCELLENT review with some great rehab tips at the conclusion like this“Once isolated contraction of the deep external rotator musclesis successfully achieved, progression can be made to therehabilitation …

Great, FREE FULL TEXT article on the hip.

an EXCELLENT review with some great rehab tips at the conclusion like this

“Once isolated contraction of the deep external rotator muscles
is successfully achieved, progression can be made to the
rehabilitation of secondary stabilisers and prime movers of the
hip, particularly the gluteus maximus, initially using nonweight
bearing exercises and progressing to weight bearing
exercises once motor control and strength allows. Pre-activation
of the deep external rotators may make these exercises
more effective. Deficits in flexibility and proprioception
should also be addressed at this stage. Once adequate hip muscle
strength and endurance is achieved, functional and sports
specific exercises can then be implemented. ”

Can local muscles augment stability in the hip?: A narrative literature review T.H. Retchford, K.M. Crossley, A. Grimaldi , J.L. Kemp, S.M. Cowan J Musculoskelet Neuronal Interact 2013; 13(1):1-12

http://www.ismni.org/jmni/pdf/51/01RETCHFORD.pdf

image from: https://www.researchgate.net/…/258427127_fig12_Fig-11-Anato…

Gait, walking.:Why movement matters.

Gait … . walking.
Movement is medicine, nothing new.
A recent study out of Stanford University found that walking for at least 10 minutes enhances a person’s creativity.
” Dr. John Ratey states, “when his patients stopped exercising, many not only became depressed, by some actually developed adult ADHD.”

Some famous scientists were known to walk to stimulate creativity.
“Ratey is especially a fan of walking with no purpose. He says that’s when the brain can pick up more information and walking can allow one’s thoughts to come and go in a way they don’t when a person is focusing on something specific.“When we’re walking,” says Ratey, “We are stimulating the brain in many, many ways.”“

http://hereandnow.wbur.org/2014/05/19/why-walking-matters

Muscle activity

Does variability in muscle activity reflect a preferred way of moving or just reflect what they’ve always done? In this study it was found that there isn’t always this tight relationship between activity in the muscles and the movement we’re seeing.
“Clearly, locomotion is not as simple as we thought it was,” Foster said. “This decoupling – big changes in movement without corresponding changes in muscle activity – suggests there are other important factors going on and we need to better understand them if we want to reproduce these movements in prosthetics or robotics.”
Hmmmm. thoughts. this makes everything more interesting doesn’t it ?!

http://esciencenews.com/articles/2014/03/14/motion.and.muscles.dont.always.work.lockstep.researchers.find.surprising.new.study

Muscle activity and movement

“We expected to see a one-to-one correlation between the muscle activity and movements because motion is generally driven by muscles,” Higham said, “but as we changed the structure of their habitat and they changed their motions, we were surprised to find very few accompanying changes in muscle activity.”

Context-dependent changes in motor control and kinematics during locomotion: modulation and decoupling. Foster and Higham
http://www.ncbi.nlm.nih.gov/pubmed/24621949

Reteaching sensory-motor patterns

Trying to reteach your client’s CNS new sensory-motor patterns so they can move better ? We like to say that the first few weeks are like paying down a mortgage, you do not own them, you are cerebrally renting those changes and barely paying down the principle. It takes focused work and time to truly own the changes so that they translate into better movement.
“Depending on the complexity of the activity, [experiments have required] four and a half months, 144 days or even three months for a new brain map, equal in complexity to an old one, to be created in the motor cortex.” -Swart
New connections and pathways are fragile and only through repetition and practice and focused attention can those connections be established enough to become habitual or default behaviors.

Neuroscience for Leadership: Harnessing the Brain Gain Advantage (The Neuroscience of Business). Tara Swart

“Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes.” 1

We also found this interesting quote from Science Daily on this topic of complex sensory motor behaviors and on the varying information on central pattern generators.

ScienceDaily (June 3, 2012) — “A new finding that motor cortex is a dynamic pattern generator upends existing theory with broad implications for neuroscience.”

“Maybe it is actually easier to understand than we thought. A new paper presents some compelling evidence that the motor cortex, rather than being command central, is more like a part of the machine, sending rhythmic signals down the spinal cord to orchestrate movement.”

"The electrical signal that drives a given movement is therefore an amalgam — a summation — of the rhythms of all the motor neurons firing at a given moment.” This is of course monitored (and modified) by one of our best friends, the cerebellum. 2

The cortex is where movement begins and where it ends; from areas 4, 4s and 6 in the precentral gyrus of the brain’s frontal lobe, down the spinal cord and out to the muscle through the peripheral nerve.   It is also where the information from the body’s receptors feed back,  to give updates on where the body parts are in space (proprioception) and how they are doing functionally (comparing information about length, tension, etc).  It is about sensory and motor function.  Motor function is based on sensory input.  Good motor function is based on good sensory information. It is a subtle, beautiful, intricate symphony.  And when one part goes wrong, the whole system can be thrown off.  

Here is an example we sometimes use in our lectures and with our patients to make this point clear.  Imagine an orchestra playing Beethoven’s beautiful Ode to Joy, a choral symphony for orchestra.  Now imagine one of the musicians begins to play off key. In time, the musicians sitting around that musician who are most locally influenced by that off tune musician, soon become irritated and have troubles playing “in tune”. In time, if not rectified, the whole orchestra could be corrupted and being to take that lead as well.  Hard to believe, but it makes the point that all it takes is one piece not playing well to change the outcome. Similar analogy, all it takes is one weak muscle or one painful joint and the outcome is skewed away from the optimal outcome and in time local dysfunction and compensation becomes an all encompassing compensation. The body’s function and operation, when proper, is an orchestra and orchestration with each piece doing a local job with a more global contribution to the bigger job. When all pieces come together appropriately it creates a symphony of flawless, effortless movement as seen in the video above.

Shawn and Ivo, the gait guys

refs:

1. Front Syst Neurosci. 2014 Feb 13;8:16. eCollection 2014. Cognitive motor interactions of the basal ganglia in development .  Leisman G1, Braun-Benjamin O2, Melillo R3.

It’s a “Dancing Queen” kind of Friday  here on The Gait Guys.  Enjoy !  Shake it like you wanna break it sweetie !

Human movement is a beautiful thing, in any form. So are uninhibited individuals like this sparky lady. Why stand when you can dance ?

“Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, language comprehension, and other cognitive functions associated with frontal lobes.”

Don’t you wanna become a Gait Guy Geek !?  (come on, you know you wanna !)

Leonard and Sheldon, The Gait Guys Theory

Front Syst Neurosci. 2014 Feb 13;8:16. eCollection 2014.

Cognitive-motor interactions of the basal ganglia in development.

What is driving our patterned movements such as gait and running ?

ScienceDaily (June 3, 2012) — A new finding that motor cortex is a dynamic pattern generator upends existing theory with broad implications for neuroscience.

Maybe it is actually easier to understand than we thought. A new paper presents some compelling evidence that the motor cortex, rather than being command central, is more like a part of the machine, sending rhythmic signals down the spinal cord to orchestrate movement. 

“The electrical signal that drives a given movement is therefore an amalgam – a summation – of the rhythms of all the motor neurons firing at a given moment.”


This is of course monitored (and modified) by one of our best friends, the cerebellum.

Check it out here: http://www.sciencedaily.com/releases/2012/06/120603191720.htm#.T8yrhOzhvGk.facebook

Ivo and Shawn…Geeky….Cool….Hey, geeky is the new cool. Don’t laugh, you a re a geek as well if you are reading this post : )

The Brain is for movement (yes, that means running too). TED talk.

Today’s video is very very important.

Some of you have been asking questions about Dr. Waerlop’s videos. “Why so much neurology on The Gait Guys ?" 

Our answer, "Because that is where it all starts !"  It is where movement begins and where it ends; from areas 4, 4s and 6 in the precentral gyrus of the brain’s frontal lobe, down the spinal cord and out to the muscle through the peripheral nerve.   It is also where the information from the body’s receptors feed back,  to give updates on where the body parts are in space (proprioception) and how they are doing functionally (comparing information about length, tension, etc).  It is about sensory and motor function.  Motor function is based on sensory input.  Good motor function is based on good sensory information. It is a subtle, beautiful, intricate symphony.  And when one part goes wrong, the whole system can be thrown off.  

Here is an example Dr. Allen gives in his lectures and to his patients to make this point clear goes like this.  Imagine an orchestra playing Beethoven’s beautiful Ode to Joy, one of Dr. Allen’s favorite pieces. (btw: The ode is best known for its musical setting in D major in the final movement of his Ninth Symphony (completed in 1824), a choral symphony for orchestra, four solo voices and choir.)  Now imagine one of the musicians begins to play off key. In time, the whole orchestra could be corrupted and being to take that lead as well, leaving Dr. Allen weeping uncontrollably.  Hard to believe, but it makes the point that all it takes is one piece not playing well to change the outcome. Similar analogy, all it takes is one weak muscle or one painful joint and the outcome is skewed away from the optimal outcome. The body’s function and operation, when proper, is an orchestra with each piece doing a job and and function to create a symphony of flawless, effortless movement.  Point made.

This is why The Gait Guys throws so much neurology out here on the blog.  Because in the most basic way, this is what movement is all about. 

In today’s blog post, we finish up with a brilliant TED educational videocast of Neuroscientist Daniel Wolpert who starts from a surprising premise: the brain evolved, not to think or feel, but to control movement. In this entertaining, data-rich talk he gives us a glimpse into how the brain creates the grace and agility of human motion.  Whether you are a runner, a football player, a dancer or just someone who wants to stay painfree and active and understand the brilliance of this body of ours, this is a video you do not want to miss.

Bottom line …….. the brain is not for thinking so much as it is for producing complex and adaptable movements.  Movement is the only way of affecting and interacting with the environment around us.  Once you no longer need to move, you do not need the luxury of a brain, hence what happens to the brain in coma patients, neurosupression.  And so The Gait Guys talk alot about neurology … . because we need to.

The Gait Guys …… we take aim, and are right on target……..

We are the Robin Hood’s of all things Gait.